Properties

Label 6-3380e3-20.19-c0e3-0-1
Degree $6$
Conductor $38614472000$
Sign $1$
Analytic cond. $4.79978$
Root an. cond. $1.29878$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3-s + 6·4-s − 3·5-s + 3·6-s − 7-s + 10·8-s − 9·10-s + 6·12-s − 3·14-s − 3·15-s + 15·16-s − 18·20-s − 21-s + 23-s + 10·24-s + 6·25-s − 6·28-s − 29-s − 9·30-s + 21·32-s + 3·35-s − 30·40-s + 41-s − 3·42-s + 43-s + 3·46-s + ⋯
L(s)  = 1  + 3·2-s + 3-s + 6·4-s − 3·5-s + 3·6-s − 7-s + 10·8-s − 9·10-s + 6·12-s − 3·14-s − 3·15-s + 15·16-s − 18·20-s − 21-s + 23-s + 10·24-s + 6·25-s − 6·28-s − 29-s − 9·30-s + 21·32-s + 3·35-s − 30·40-s + 41-s − 3·42-s + 43-s + 3·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{6} \cdot 5^{3} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(4.79978\)
Root analytic conductor: \(1.29878\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{3380} (339, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{6} \cdot 5^{3} \cdot 13^{6} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(9.708256515\)
\(L(\frac12)\) \(\approx\) \(9.708256515\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{3} \)
5$C_1$ \( ( 1 + T )^{3} \)
13 \( 1 \)
good3$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
7$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
23$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
29$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
43$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
47$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
61$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
67$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
89$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64149235544180435167828342490, −7.38312411870960796806161158205, −7.34807161531054468791818919319, −7.00141096322497464730891437412, −6.79801736372797350650081163072, −6.60791758856071618791712857529, −6.30614102924908065496690192338, −5.95895283790533200557267718296, −5.71710182643990300911823478823, −5.45041546502141874178775591622, −4.95268491260131279839602553412, −4.92716880141915874104983068418, −4.55280991833534420148658328640, −4.27216963543877248176487370095, −4.15911226533930997953477957098, −3.87140491298225688505437750109, −3.43952144961427468075317933194, −3.35365795525210714259229879084, −3.31249211780687260007979103096, −2.74083308366932046002062458915, −2.61536889314151579583028995548, −2.60271744438909728511529301567, −1.71395280661527343135618566265, −1.40115500077646666898954733612, −0.78260200312655329426528170447, 0.78260200312655329426528170447, 1.40115500077646666898954733612, 1.71395280661527343135618566265, 2.60271744438909728511529301567, 2.61536889314151579583028995548, 2.74083308366932046002062458915, 3.31249211780687260007979103096, 3.35365795525210714259229879084, 3.43952144961427468075317933194, 3.87140491298225688505437750109, 4.15911226533930997953477957098, 4.27216963543877248176487370095, 4.55280991833534420148658328640, 4.92716880141915874104983068418, 4.95268491260131279839602553412, 5.45041546502141874178775591622, 5.71710182643990300911823478823, 5.95895283790533200557267718296, 6.30614102924908065496690192338, 6.60791758856071618791712857529, 6.79801736372797350650081163072, 7.00141096322497464730891437412, 7.34807161531054468791818919319, 7.38312411870960796806161158205, 7.64149235544180435167828342490

Graph of the $Z$-function along the critical line