Properties

Label 4-3380e2-1.1-c0e2-0-6
Degree $4$
Conductor $11424400$
Sign $1$
Analytic cond. $2.84542$
Root an. cond. $1.29878$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 5-s + 4·8-s − 2·9-s + 2·10-s + 5·16-s − 4·18-s + 3·20-s + 2·29-s + 6·32-s − 6·36-s − 2·37-s + 4·40-s − 2·45-s + 2·49-s + 4·58-s + 2·61-s + 7·64-s − 8·72-s − 2·73-s − 4·74-s + 5·80-s + 3·81-s − 4·90-s − 4·97-s + 4·98-s + ⋯
L(s)  = 1  + 2·2-s + 3·4-s + 5-s + 4·8-s − 2·9-s + 2·10-s + 5·16-s − 4·18-s + 3·20-s + 2·29-s + 6·32-s − 6·36-s − 2·37-s + 4·40-s − 2·45-s + 2·49-s + 4·58-s + 2·61-s + 7·64-s − 8·72-s − 2·73-s − 4·74-s + 5·80-s + 3·81-s − 4·90-s − 4·97-s + 4·98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11424400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11424400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11424400\)    =    \(2^{4} \cdot 5^{2} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(2.84542\)
Root analytic conductor: \(1.29878\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11424400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(6.361604111\)
\(L(\frac12)\) \(\approx\) \(6.361604111\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
5$C_2$ \( 1 - T + T^{2} \)
13 \( 1 \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_1$ \( ( 1 + T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.681485745234346018779047302873, −8.663472449575401113603482016642, −8.118321905289042751165889697195, −7.917423618796417269441643969804, −7.05502869548159628382395535097, −7.03084904299394981646434362147, −6.55266292757027553296092534227, −6.24172002732736456763090227308, −5.74641999505331108263344870248, −5.49502191801998934046410731599, −5.35909502598780485538030469732, −4.97816530325951853797434639285, −4.24678462749496717848847112793, −4.08217057206379429356308869670, −3.42086498912201248122101115726, −3.02281811361872055438906151895, −2.56429452904242763744076667974, −2.46514215312052045295560333167, −1.76531196172674392041617007576, −1.13592755646245345729603380383, 1.13592755646245345729603380383, 1.76531196172674392041617007576, 2.46514215312052045295560333167, 2.56429452904242763744076667974, 3.02281811361872055438906151895, 3.42086498912201248122101115726, 4.08217057206379429356308869670, 4.24678462749496717848847112793, 4.97816530325951853797434639285, 5.35909502598780485538030469732, 5.49502191801998934046410731599, 5.74641999505331108263344870248, 6.24172002732736456763090227308, 6.55266292757027553296092534227, 7.03084904299394981646434362147, 7.05502869548159628382395535097, 7.917423618796417269441643969804, 8.118321905289042751165889697195, 8.663472449575401113603482016642, 8.681485745234346018779047302873

Graph of the $Z$-function along the critical line