Properties

Label 2-338-1.1-c7-0-67
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $105.586$
Root an. cond. $10.2755$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 18.5·3-s + 64·4-s + 6.61·5-s − 148.·6-s + 1.60e3·7-s − 512·8-s − 1.84e3·9-s − 52.9·10-s − 1.17e3·11-s + 1.18e3·12-s − 1.28e4·14-s + 122.·15-s + 4.09e3·16-s + 2.80e4·17-s + 1.47e4·18-s − 1.38e4·19-s + 423.·20-s + 2.97e4·21-s + 9.38e3·22-s − 9.44e4·23-s − 9.47e3·24-s − 7.80e4·25-s − 7.46e4·27-s + 1.02e5·28-s + 1.59e5·29-s − 979.·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.395·3-s + 0.5·4-s + 0.0236·5-s − 0.279·6-s + 1.76·7-s − 0.353·8-s − 0.843·9-s − 0.0167·10-s − 0.265·11-s + 0.197·12-s − 1.25·14-s + 0.00936·15-s + 0.250·16-s + 1.38·17-s + 0.596·18-s − 0.462·19-s + 0.0118·20-s + 0.699·21-s + 0.187·22-s − 1.61·23-s − 0.139·24-s − 0.999·25-s − 0.729·27-s + 0.884·28-s + 1.21·29-s − 0.00662·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(105.586\)
Root analytic conductor: \(10.2755\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
13 \( 1 \)
good3 \( 1 - 18.5T + 2.18e3T^{2} \)
5 \( 1 - 6.61T + 7.81e4T^{2} \)
7 \( 1 - 1.60e3T + 8.23e5T^{2} \)
11 \( 1 + 1.17e3T + 1.94e7T^{2} \)
17 \( 1 - 2.80e4T + 4.10e8T^{2} \)
19 \( 1 + 1.38e4T + 8.93e8T^{2} \)
23 \( 1 + 9.44e4T + 3.40e9T^{2} \)
29 \( 1 - 1.59e5T + 1.72e10T^{2} \)
31 \( 1 + 1.13e5T + 2.75e10T^{2} \)
37 \( 1 + 4.02e5T + 9.49e10T^{2} \)
41 \( 1 + 5.83e5T + 1.94e11T^{2} \)
43 \( 1 + 8.85e4T + 2.71e11T^{2} \)
47 \( 1 + 1.12e5T + 5.06e11T^{2} \)
53 \( 1 - 5.48e5T + 1.17e12T^{2} \)
59 \( 1 + 1.69e6T + 2.48e12T^{2} \)
61 \( 1 - 1.33e6T + 3.14e12T^{2} \)
67 \( 1 - 7.19e5T + 6.06e12T^{2} \)
71 \( 1 + 1.85e6T + 9.09e12T^{2} \)
73 \( 1 - 1.50e6T + 1.10e13T^{2} \)
79 \( 1 + 6.07e6T + 1.92e13T^{2} \)
83 \( 1 - 6.61e5T + 2.71e13T^{2} \)
89 \( 1 - 1.03e7T + 4.42e13T^{2} \)
97 \( 1 + 6.14e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.926660511803081114059887629963, −8.592981264970009912891860252398, −8.192526496412238570792393743975, −7.47799215928709580073437611984, −5.94683240602415251044773561544, −5.06251672401948193431832692607, −3.64152874981948893376892855833, −2.26424254707150264898183908145, −1.45893874660769332962802568287, 0, 1.45893874660769332962802568287, 2.26424254707150264898183908145, 3.64152874981948893376892855833, 5.06251672401948193431832692607, 5.94683240602415251044773561544, 7.47799215928709580073437611984, 8.192526496412238570792393743975, 8.592981264970009912891860252398, 9.926660511803081114059887629963

Graph of the $Z$-function along the critical line