L(s) = 1 | + (−1.36 − 0.366i)2-s + (−1.52 − 2.63i)3-s + (1.73 + i)4-s + (4.79 − 4.79i)5-s + (1.11 + 4.15i)6-s + (−4.25 + 1.13i)7-s + (−1.99 − 2i)8-s + (−0.132 + 0.228i)9-s + (−8.29 + 4.79i)10-s + (3.71 − 13.8i)11-s − 6.08i·12-s + 6.22·14-s + (−19.9 − 5.33i)15-s + (1.99 + 3.46i)16-s + (20.9 + 12.1i)17-s + (0.264 − 0.264i)18-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (−0.507 − 0.878i)3-s + (0.433 + 0.250i)4-s + (0.958 − 0.958i)5-s + (0.185 + 0.692i)6-s + (−0.607 + 0.162i)7-s + (−0.249 − 0.250i)8-s + (−0.0146 + 0.0254i)9-s + (−0.829 + 0.479i)10-s + (0.337 − 1.26i)11-s − 0.507i·12-s + 0.444·14-s + (−1.32 − 0.355i)15-s + (0.124 + 0.216i)16-s + (1.23 + 0.713i)17-s + (0.0146 − 0.0146i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.955 + 0.295i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.955 + 0.295i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.146314 - 0.966749i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.146314 - 0.966749i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 0.366i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (1.52 + 2.63i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (-4.79 + 4.79i)T - 25iT^{2} \) |
| 7 | \( 1 + (4.25 - 1.13i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (-3.71 + 13.8i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (-20.9 - 12.1i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (6.82 + 25.4i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (-5.44 + 3.14i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-11.1 - 19.2i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (8.59 - 8.59i)T - 961iT^{2} \) |
| 37 | \( 1 + (-1.64 + 6.13i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (70.4 + 18.8i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (26.9 + 15.5i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-7.65 - 7.65i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + 33.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (36.4 - 9.77i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-11.5 + 19.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-103. - 27.8i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (0.591 + 2.20i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-38.1 - 38.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 19.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-34.7 + 34.7i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (0.930 - 3.47i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-6.51 - 24.3i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91398805653238533863980004615, −9.839455466753752555436479163485, −9.024703035052849139291766785621, −8.310709196198614689184581233468, −6.90361624355589323642650365489, −6.17441992581326762949072513730, −5.29983383408071909629490286475, −3.30580146965920969624551059651, −1.62023698375056491919522570079, −0.61969679723281753601417921798,
1.91396438853635899204927284714, 3.43879177339645181365268348998, 4.96800167169986384396118289964, 6.05139967046622943152788105895, 6.86206731816248231746900948182, 7.889019611634294829185018109352, 9.564934170370923194852434311172, 9.957191560204935199937748335768, 10.30674714965415502925739730829, 11.43478599454712061608117243391