L(s) = 1 | + (0.366 + 1.36i)2-s + (1.92 − 3.33i)3-s + (−1.73 + i)4-s + (3.77 − 3.77i)5-s + (5.25 + 1.40i)6-s + (2.65 − 9.91i)7-s + (−2 − 1.99i)8-s + (−2.90 − 5.02i)9-s + (6.53 + 3.77i)10-s + (−10.1 + 2.71i)11-s + 7.69i·12-s + 14.5·14-s + (−5.31 − 19.8i)15-s + (1.99 − 3.46i)16-s + (−4.23 + 2.44i)17-s + (5.80 − 5.80i)18-s + ⋯ |
L(s) = 1 | + (0.183 + 0.683i)2-s + (0.641 − 1.11i)3-s + (−0.433 + 0.250i)4-s + (0.754 − 0.754i)5-s + (0.875 + 0.234i)6-s + (0.379 − 1.41i)7-s + (−0.250 − 0.249i)8-s + (−0.322 − 0.558i)9-s + (0.653 + 0.377i)10-s + (−0.919 + 0.246i)11-s + 0.641i·12-s + 1.03·14-s + (−0.354 − 1.32i)15-s + (0.124 − 0.216i)16-s + (−0.249 + 0.143i)17-s + (0.322 − 0.322i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.283 + 0.958i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.283 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.81879 - 1.35871i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.81879 - 1.35871i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 - 1.36i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-1.92 + 3.33i)T + (-4.5 - 7.79i)T^{2} \) |
| 5 | \( 1 + (-3.77 + 3.77i)T - 25iT^{2} \) |
| 7 | \( 1 + (-2.65 + 9.91i)T + (-42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (10.1 - 2.71i)T + (104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (4.23 - 2.44i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (25.5 + 6.83i)T + (312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (-17.2 - 9.97i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (7.15 - 12.3i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-19.0 + 19.0i)T - 961iT^{2} \) |
| 37 | \( 1 + (-58.6 + 15.7i)T + (1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (-1.29 - 4.83i)T + (-1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (-10.3 + 5.98i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (7.59 + 7.59i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 77.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-16.2 + 60.7i)T + (-3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-28.1 - 48.7i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (1.58 + 5.90i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-55.2 - 14.7i)T + (4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-12.7 - 12.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 7.98T + 6.24e3T^{2} \) |
| 83 | \( 1 + (35.8 - 35.8i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (78.2 - 20.9i)T + (6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-52.9 - 14.1i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10065547375191290368852565903, −10.07899447780193842014288652298, −8.932004785216744884151599514944, −8.058604020868430671699672508006, −7.38007175621655445074408471826, −6.54254375862083812682180916301, −5.22996979796725080068600983116, −4.19624629675247973889155188021, −2.33973325832591182823160237062, −0.956296877053852724624020629193,
2.36531714043997040363532203168, 2.83833346126425108080156264030, 4.33347318865074687002553407879, 5.37462775237180495221258569136, 6.36757224426237677382501530895, 8.266675444315516964452241862122, 8.911708206835339331537380893733, 9.830809909566671668886709111866, 10.49327877824339952417356344708, 11.23641800551514056376595272401