Properties

Label 8-338e4-1.1-c2e4-0-3
Degree $8$
Conductor $13051691536$
Sign $1$
Analytic cond. $7194.60$
Root an. cond. $3.03477$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 12·5-s − 4·7-s − 4·8-s + 18·9-s + 24·10-s − 12·11-s + 8·14-s + 8·16-s − 36·18-s − 52·19-s − 24·20-s + 24·22-s + 72·25-s − 8·28-s + 96·29-s − 56·31-s − 8·32-s + 48·35-s + 36·36-s − 74·37-s + 104·38-s + 48·40-s + 18·41-s − 24·44-s − 216·45-s + ⋯
L(s)  = 1  − 2-s + 1/2·4-s − 2.39·5-s − 4/7·7-s − 1/2·8-s + 2·9-s + 12/5·10-s − 1.09·11-s + 4/7·14-s + 1/2·16-s − 2·18-s − 2.73·19-s − 6/5·20-s + 1.09·22-s + 2.87·25-s − 2/7·28-s + 3.31·29-s − 1.80·31-s − 1/4·32-s + 1.37·35-s + 36-s − 2·37-s + 2.73·38-s + 6/5·40-s + 0.439·41-s − 0.545·44-s − 4.79·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(7194.60\)
Root analytic conductor: \(3.03477\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 13^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3032364205\)
\(L(\frac12)\) \(\approx\) \(0.3032364205\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
13 \( 1 \)
good3$C_2^2$ \( ( 1 - p^{2} T^{2} + p^{4} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
7$C_2^3$ \( 1 + 4 T + 8 T^{2} - 360 T^{3} - 3121 T^{4} - 360 p^{2} T^{5} + 8 p^{4} T^{6} + 4 p^{6} T^{7} + p^{8} T^{8} \)
11$C_2^3$ \( 1 + 12 T + 72 T^{2} - 2040 T^{3} - 26881 T^{4} - 2040 p^{2} T^{5} + 72 p^{4} T^{6} + 12 p^{6} T^{7} + p^{8} T^{8} \)
17$C_2^3$ \( 1 + 542 T^{2} + 210243 T^{4} + 542 p^{4} T^{6} + p^{8} T^{8} \)
19$C_2^3$ \( 1 + 52 T + 1352 T^{2} + 32760 T^{3} + 721439 T^{4} + 32760 p^{2} T^{5} + 1352 p^{4} T^{6} + 52 p^{6} T^{7} + p^{8} T^{8} \)
23$C_2^3$ \( 1 + 482 T^{2} - 47517 T^{4} + 482 p^{4} T^{6} + p^{8} T^{8} \)
29$C_2^2$ \( ( 1 - 48 T + 1463 T^{2} - 48 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 28 T + 392 T^{2} + 28 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$C_2$$\times$$C_2^2$ \( ( 1 + p T + p^{2} T^{2} )^{2}( 1 - p^{2} T^{2} + p^{4} T^{4} ) \)
41$C_2^3$ \( 1 - 18 T + 162 T^{2} + 57600 T^{3} - 3344161 T^{4} + 57600 p^{2} T^{5} + 162 p^{4} T^{6} - 18 p^{6} T^{7} + p^{8} T^{8} \)
43$C_2^3$ \( 1 + 2402 T^{2} + 2350803 T^{4} + 2402 p^{4} T^{6} + p^{8} T^{8} \)
47$C_2^2$ \( ( 1 - 84 T + 3528 T^{2} - 84 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )^{4} \)
59$C_2^3$ \( 1 - 108 T + 5832 T^{2} + 122040 T^{3} - 18707521 T^{4} + 122040 p^{2} T^{5} + 5832 p^{4} T^{6} - 108 p^{6} T^{7} + p^{8} T^{8} \)
61$C_2^2$ \( ( 1 - 18 T - 3397 T^{2} - 18 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 44 T + 968 T^{2} + 352440 T^{3} - 27904801 T^{4} + 352440 p^{2} T^{5} + 968 p^{4} T^{6} - 44 p^{6} T^{7} + p^{8} T^{8} \)
71$C_2^3$ \( 1 + 12 T + 72 T^{2} - 120120 T^{3} - 26132401 T^{4} - 120120 p^{2} T^{5} + 72 p^{4} T^{6} + 12 p^{6} T^{7} + p^{8} T^{8} \)
73$C_2^2$ \( ( 1 - 34 T + 578 T^{2} - 34 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 108 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 156 T + 12168 T^{2} - 156 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 18 T + 162 T^{2} + 282240 T^{3} - 65282401 T^{4} + 282240 p^{2} T^{5} + 162 p^{4} T^{6} - 18 p^{6} T^{7} + p^{8} T^{8} \)
97$C_2^3$ \( 1 - 94 T + 4418 T^{2} + 1353600 T^{3} - 152148481 T^{4} + 1353600 p^{2} T^{5} + 4418 p^{4} T^{6} - 94 p^{6} T^{7} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.325336974031626909192131502635, −7.88394916350271449385967790260, −7.60268480085748439196547282787, −7.47774250793877394269889501774, −7.17787195961130728154076810087, −6.88934902499798843098060106992, −6.80375992941791513601081968349, −6.78776706339074716900467221297, −6.21263016425121511723422407487, −5.77432942353784332594722587847, −5.63761306732714835126888793305, −5.22093677650847199515781006721, −4.79589425395880233235867020766, −4.48408917798117936062220316781, −4.29423719247434637804522552562, −4.02332793436250553759373833282, −3.83896192752058996785142553693, −3.57265013422337033734331350794, −3.10056428831029367857258307506, −2.52259459541151749065638992408, −2.37755498528542697382829607215, −1.97880252384278742705133107964, −1.09926410071360704099714243896, −0.78027029790163845958258569386, −0.22156420697015050367786911841, 0.22156420697015050367786911841, 0.78027029790163845958258569386, 1.09926410071360704099714243896, 1.97880252384278742705133107964, 2.37755498528542697382829607215, 2.52259459541151749065638992408, 3.10056428831029367857258307506, 3.57265013422337033734331350794, 3.83896192752058996785142553693, 4.02332793436250553759373833282, 4.29423719247434637804522552562, 4.48408917798117936062220316781, 4.79589425395880233235867020766, 5.22093677650847199515781006721, 5.63761306732714835126888793305, 5.77432942353784332594722587847, 6.21263016425121511723422407487, 6.78776706339074716900467221297, 6.80375992941791513601081968349, 6.88934902499798843098060106992, 7.17787195961130728154076810087, 7.47774250793877394269889501774, 7.60268480085748439196547282787, 7.88394916350271449385967790260, 8.325336974031626909192131502635

Graph of the $Z$-function along the critical line