L(s) = 1 | − 3-s + (−0.725 + 2.11i)5-s − i·7-s + 9-s − 1.98i·11-s + 4.46·13-s + (0.725 − 2.11i)15-s + 6.83i·17-s − 6.40i·19-s + i·21-s + 8.27i·23-s + (−3.94 − 3.06i)25-s − 27-s − 2.08i·29-s − 1.28·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.324 + 0.945i)5-s − 0.377i·7-s + 0.333·9-s − 0.598i·11-s + 1.23·13-s + (0.187 − 0.546i)15-s + 1.65i·17-s − 1.46i·19-s + 0.218i·21-s + 1.72i·23-s + (−0.789 − 0.613i)25-s − 0.192·27-s − 0.386i·29-s − 0.230·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.660 - 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.660 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.386759051\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.386759051\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + (0.725 - 2.11i)T \) |
| 7 | \( 1 + iT \) |
good | 11 | \( 1 + 1.98iT - 11T^{2} \) |
| 13 | \( 1 - 4.46T + 13T^{2} \) |
| 17 | \( 1 - 6.83iT - 17T^{2} \) |
| 19 | \( 1 + 6.40iT - 19T^{2} \) |
| 23 | \( 1 - 8.27iT - 23T^{2} \) |
| 29 | \( 1 + 2.08iT - 29T^{2} \) |
| 31 | \( 1 + 1.28T + 31T^{2} \) |
| 37 | \( 1 - 10.5T + 37T^{2} \) |
| 41 | \( 1 + 5.84T + 41T^{2} \) |
| 43 | \( 1 - 0.807T + 43T^{2} \) |
| 47 | \( 1 + 9.01iT - 47T^{2} \) |
| 53 | \( 1 - 4.80T + 53T^{2} \) |
| 59 | \( 1 + 1.35iT - 59T^{2} \) |
| 61 | \( 1 + 11.1iT - 61T^{2} \) |
| 67 | \( 1 + 6.01T + 67T^{2} \) |
| 71 | \( 1 - 7.23T + 71T^{2} \) |
| 73 | \( 1 - 0.829iT - 73T^{2} \) |
| 79 | \( 1 - 11.0T + 79T^{2} \) |
| 83 | \( 1 + 2.69T + 83T^{2} \) |
| 89 | \( 1 - 2.66T + 89T^{2} \) |
| 97 | \( 1 - 0.641iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.605214801266393757079306959016, −7.901194617032717043771226974875, −7.17226274856492328131126783911, −6.31292806385036234605615072898, −6.00718390740896685152274359227, −4.93672856689053791408721983567, −3.73714113145313496770202833939, −3.53782115918657160294191861906, −2.12605336007258219204188341996, −0.876509388838645952953539352493,
0.63516919718752185027520886585, 1.64594014974138246647305280416, 2.91386880740911566620422730395, 4.12646778847606997720234088556, 4.62629709545478642618376627859, 5.52235360799772662628378553724, 6.11372219625181054122542079749, 7.01056486559846173093961435407, 7.86792994346925268993164622227, 8.504725657647815923100889998321