L(s) = 1 | + (−0.705 + 1.58i)3-s + i·5-s − i·7-s + (−2.00 − 2.23i)9-s + 0.590·11-s + 0.402·13-s + (−1.58 − 0.705i)15-s − 3.70i·17-s + 4.77i·19-s + (1.58 + 0.705i)21-s + 3.55·23-s − 25-s + (4.94 − 1.59i)27-s + 0.729i·29-s − 0.453i·31-s + ⋯ |
L(s) = 1 | + (−0.407 + 0.913i)3-s + 0.447i·5-s − 0.377i·7-s + (−0.668 − 0.743i)9-s + 0.178·11-s + 0.111·13-s + (−0.408 − 0.182i)15-s − 0.897i·17-s + 1.09i·19-s + (0.345 + 0.153i)21-s + 0.741·23-s − 0.200·25-s + (0.951 − 0.307i)27-s + 0.135i·29-s − 0.0814i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.357 - 0.933i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.357 - 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.306228302\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.306228302\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.705 - 1.58i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 + iT \) |
good | 11 | \( 1 - 0.590T + 11T^{2} \) |
| 13 | \( 1 - 0.402T + 13T^{2} \) |
| 17 | \( 1 + 3.70iT - 17T^{2} \) |
| 19 | \( 1 - 4.77iT - 19T^{2} \) |
| 23 | \( 1 - 3.55T + 23T^{2} \) |
| 29 | \( 1 - 0.729iT - 29T^{2} \) |
| 31 | \( 1 + 0.453iT - 31T^{2} \) |
| 37 | \( 1 + 0.804T + 37T^{2} \) |
| 41 | \( 1 - 0.972iT - 41T^{2} \) |
| 43 | \( 1 - 3.35iT - 43T^{2} \) |
| 47 | \( 1 - 1.11T + 47T^{2} \) |
| 53 | \( 1 - 8.65iT - 53T^{2} \) |
| 59 | \( 1 - 4.77T + 59T^{2} \) |
| 61 | \( 1 - 2.59T + 61T^{2} \) |
| 67 | \( 1 - 10.2iT - 67T^{2} \) |
| 71 | \( 1 - 6.78T + 71T^{2} \) |
| 73 | \( 1 - 2.81T + 73T^{2} \) |
| 79 | \( 1 - 17.3iT - 79T^{2} \) |
| 83 | \( 1 - 5.10T + 83T^{2} \) |
| 89 | \( 1 + 10.1iT - 89T^{2} \) |
| 97 | \( 1 + 7.16T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.995874842739374879552172999987, −8.163091103655217228866439627901, −7.26413773823610237413978959504, −6.56290681664808239733423936225, −5.75494011921261320631373115733, −5.03475788882525996399209921185, −4.16070613355202834678284178332, −3.47561330083119826761707578129, −2.58905426529818339825254904531, −1.02835448708551532017879317286,
0.50058453856951638623245762487, 1.62611812846909474693198511845, 2.50738319355934812796432748707, 3.61775596095778400032400023136, 4.79411727547138713700275747644, 5.37372872640855298280159044047, 6.23949820790065906712482551213, 6.82034738765545041240877874092, 7.61717648797726510386539941698, 8.430975367405469621873838518274