L(s) = 1 | + (5.18 + 0.283i)3-s + (−8.90 − 5.14i)5-s + (−9.06 + 16.1i)7-s + (26.8 + 2.93i)9-s + (−23.0 − 40.0i)11-s + 26.5·13-s + (−44.7 − 29.2i)15-s + (102. − 59.4i)17-s + (142. + 82.5i)19-s + (−51.5 + 81.2i)21-s + (65.7 − 113. i)23-s + (−9.59 − 16.6i)25-s + (138. + 22.8i)27-s + 15.1i·29-s + (101. − 58.4i)31-s + ⋯ |
L(s) = 1 | + (0.998 + 0.0544i)3-s + (−0.796 − 0.460i)5-s + (−0.489 + 0.872i)7-s + (0.994 + 0.108i)9-s + (−0.633 − 1.09i)11-s + 0.566·13-s + (−0.770 − 0.502i)15-s + (1.46 − 0.848i)17-s + (1.72 + 0.996i)19-s + (−0.536 + 0.844i)21-s + (0.596 − 1.03i)23-s + (−0.0767 − 0.132i)25-s + (0.986 + 0.162i)27-s + 0.0968i·29-s + (0.586 − 0.338i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 + 0.481i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.876 + 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.320986088\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.320986088\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-5.18 - 0.283i)T \) |
| 7 | \( 1 + (9.06 - 16.1i)T \) |
good | 5 | \( 1 + (8.90 + 5.14i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (23.0 + 40.0i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 26.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-102. + 59.4i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-142. - 82.5i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-65.7 + 113. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 15.1iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-101. + 58.4i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-113. + 196. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 220. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 338. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (169. - 293. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (660. - 381. i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (238. + 412. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (148. - 257. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-596. + 344. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 700.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (155. + 268. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-248. - 143. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 906.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (616. + 355. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 354.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10785409892155663151433365551, −9.834770834327414119606172585938, −9.138941740185693673753129780595, −8.076934178410728030619005295861, −7.75427251340680619808582182842, −6.10976873021255057791629218792, −5.00539430833186236533158707000, −3.50323148054737277886360119821, −2.88196947946648664379188744773, −0.906097643908712267939793792866,
1.24446169140523778117580739425, 3.10967943360119726926312973438, 3.66714508778959917280912098134, 5.01290022585799408447888569956, 6.80755772103065483116958237439, 7.52649911844118047712493482170, 8.058785742777019919748102972362, 9.567738019662187369390350855913, 10.02136022688147425994928181925, 11.12787803611651337985378027477