L(s) = 1 | + (−4.5 − 2.59i)3-s + (18.5 + 0.866i)7-s + (13.5 + 23.3i)9-s − 89·13-s + (25.5 − 14.7i)19-s + (−81 − 51.9i)21-s + (−62.5 + 108. i)25-s − 140. i·27-s + (298.5 + 172. i)31-s + (216.5 + 374. i)37-s + (400.5 + 231. i)39-s + 341. i·43-s + (341.5 + 32.0i)49-s − 153·57-s + (−91 − 157. i)61-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)3-s + (0.998 + 0.0467i)7-s + (0.5 + 0.866i)9-s − 1.89·13-s + (0.307 − 0.177i)19-s + (−0.841 − 0.539i)21-s + (−0.5 + 0.866i)25-s − 1.00i·27-s + (1.72 + 0.998i)31-s + (0.961 + 1.66i)37-s + (1.64 + 0.949i)39-s + 1.21i·43-s + (0.995 + 0.0934i)49-s − 0.355·57-s + (−0.191 − 0.330i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.592 - 0.805i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.592 - 0.805i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.120422476\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.120422476\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 + 2.59i)T \) |
| 7 | \( 1 + (-18.5 - 0.866i)T \) |
good | 5 | \( 1 + (62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 89T + 2.19e3T^{2} \) |
| 17 | \( 1 + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-25.5 + 14.7i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 2.43e4T^{2} \) |
| 31 | \( 1 + (-298.5 - 172. i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-216.5 - 374. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 6.89e4T^{2} \) |
| 43 | \( 1 - 341. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (91 + 157. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-376.5 - 217. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 + (459.5 - 795. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-1.13e3 + 655. i)T + (2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 5.71e5T^{2} \) |
| 89 | \( 1 + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.33e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.57290917351419825359681594315, −10.42338070938962455338401476787, −9.613037674827023931934511654174, −8.125883075023166551603399090863, −7.46193085658857844435839194775, −6.46210648768383682061450706750, −5.15238116765068340849323056639, −4.65265098353397442479021623469, −2.55256586262323901845858281189, −1.18771820452785998687964030573,
0.50546075809287686522785139190, 2.31781472513930152821595757628, 4.18538419416570620359457716131, 4.93236119970514500835092566739, 5.89206656517005364971473508527, 7.16216285502396768188738903864, 8.025125209201770674198844258102, 9.412150247098709391269951618567, 10.11230040825301544492157071731, 11.00569490090836197114386661447