L(s) = 1 | − 3·3-s + 20.9i·5-s + (−17.6 − 5.46i)7-s + 9·9-s + 23.8i·11-s + 74.6i·13-s − 62.7i·15-s − 68.6i·17-s − 26.6·19-s + (53.0 + 16.4i)21-s − 74.6i·23-s − 313.·25-s − 27·27-s + 128.·29-s + 212.·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.87i·5-s + (−0.955 − 0.295i)7-s + 0.333·9-s + 0.653i·11-s + 1.59i·13-s − 1.08i·15-s − 0.979i·17-s − 0.321·19-s + (0.551 + 0.170i)21-s − 0.677i·23-s − 2.50·25-s − 0.192·27-s + 0.822·29-s + 1.22·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.733 + 0.679i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.733 + 0.679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.3097686574\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3097686574\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3T \) |
| 7 | \( 1 + (17.6 + 5.46i)T \) |
good | 5 | \( 1 - 20.9iT - 125T^{2} \) |
| 11 | \( 1 - 23.8iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 74.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 68.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 26.6T + 6.85e3T^{2} \) |
| 23 | \( 1 + 74.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 128.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 212.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 329.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 182. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 260. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 401.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 76.7T + 1.48e5T^{2} \) |
| 59 | \( 1 + 901.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 271. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 499. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 299. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 452. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 347. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 775.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 48.7iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.05e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.66955766036395376612647633707, −10.63634585688051439673419426233, −10.12661029926269211817102781907, −9.200199908267379383251060053355, −7.44948623623674897598299923785, −6.64639720833638875514870511781, −6.42627824969000761327152062070, −4.62463350674462104232151641453, −3.40911008751076188453989196978, −2.23811778346898725610760873930,
0.12758573228161346390308600919, 1.23966943708225325965871612758, 3.30316278952309992712604465797, 4.67055301435595551250045506519, 5.59792042540338060314688946989, 6.28114240315378803919426590599, 8.016354655256485847487123985898, 8.578940957149999053735731818669, 9.654575118779189358435029299498, 10.42289792774492653530613226212