L(s) = 1 | − 3·3-s − 16·5-s − 7·7-s + 9·9-s + 18·11-s − 54·13-s + 48·15-s − 128·17-s − 52·19-s + 21·21-s + 202·23-s + 131·25-s − 27·27-s + 302·29-s + 200·31-s − 54·33-s + 112·35-s − 150·37-s + 162·39-s + 172·41-s − 164·43-s − 144·45-s + 460·47-s + 49·49-s + 384·51-s − 190·53-s − 288·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.43·5-s − 0.377·7-s + 1/3·9-s + 0.493·11-s − 1.15·13-s + 0.826·15-s − 1.82·17-s − 0.627·19-s + 0.218·21-s + 1.83·23-s + 1.04·25-s − 0.192·27-s + 1.93·29-s + 1.15·31-s − 0.284·33-s + 0.540·35-s − 0.666·37-s + 0.665·39-s + 0.655·41-s − 0.581·43-s − 0.477·45-s + 1.42·47-s + 1/7·49-s + 1.05·51-s − 0.492·53-s − 0.706·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(336s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.7409806101 |
L(21) |
≈ |
0.7409806101 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+pT |
| 7 | 1+pT |
good | 5 | 1+16T+p3T2 |
| 11 | 1−18T+p3T2 |
| 13 | 1+54T+p3T2 |
| 17 | 1+128T+p3T2 |
| 19 | 1+52T+p3T2 |
| 23 | 1−202T+p3T2 |
| 29 | 1−302T+p3T2 |
| 31 | 1−200T+p3T2 |
| 37 | 1+150T+p3T2 |
| 41 | 1−172T+p3T2 |
| 43 | 1+164T+p3T2 |
| 47 | 1−460T+p3T2 |
| 53 | 1+190T+p3T2 |
| 59 | 1+96T+p3T2 |
| 61 | 1−622T+p3T2 |
| 67 | 1+744T+p3T2 |
| 71 | 1−54T+p3T2 |
| 73 | 1−742T+p3T2 |
| 79 | 1−92T+p3T2 |
| 83 | 1−228T+p3T2 |
| 89 | 1+116T+p3T2 |
| 97 | 1+554T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20876583832361548647321631046, −10.45478755097439234300758133236, −9.173161647440508266531533252313, −8.303044130929428967487671027956, −7.05245144103255058414809493545, −6.59900792753048558806810860192, −4.84938853627883719688575040971, −4.22339317529329783087355723542, −2.74849238853855545214653975714, −0.58171754790662278082856459855,
0.58171754790662278082856459855, 2.74849238853855545214653975714, 4.22339317529329783087355723542, 4.84938853627883719688575040971, 6.59900792753048558806810860192, 7.05245144103255058414809493545, 8.303044130929428967487671027956, 9.173161647440508266531533252313, 10.45478755097439234300758133236, 11.20876583832361548647321631046