Properties

Label 2-336-4.3-c2-0-10
Degree $2$
Conductor $336$
Sign $-0.500 + 0.866i$
Analytic cond. $9.15533$
Root an. cond. $3.02577$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·3-s − 0.417·5-s + 2.64i·7-s − 2.99·9-s − 18.4i·11-s − 1.16·13-s + 0.723i·15-s + 0.417·17-s − 21.1i·19-s + 4.58·21-s − 16.9i·23-s − 24.8·25-s + 5.19i·27-s + 4.33·29-s − 20.7i·31-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.0834·5-s + 0.377i·7-s − 0.333·9-s − 1.67i·11-s − 0.0896·13-s + 0.0482i·15-s + 0.0245·17-s − 1.11i·19-s + 0.218·21-s − 0.738i·23-s − 0.993·25-s + 0.192i·27-s + 0.149·29-s − 0.670i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $-0.500 + 0.866i$
Analytic conductor: \(9.15533\)
Root analytic conductor: \(3.02577\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :1),\ -0.500 + 0.866i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.590451 - 1.02269i\)
\(L(\frac12)\) \(\approx\) \(0.590451 - 1.02269i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73iT \)
7 \( 1 - 2.64iT \)
good5 \( 1 + 0.417T + 25T^{2} \)
11 \( 1 + 18.4iT - 121T^{2} \)
13 \( 1 + 1.16T + 169T^{2} \)
17 \( 1 - 0.417T + 289T^{2} \)
19 \( 1 + 21.1iT - 361T^{2} \)
23 \( 1 + 16.9iT - 529T^{2} \)
29 \( 1 - 4.33T + 841T^{2} \)
31 \( 1 + 20.7iT - 961T^{2} \)
37 \( 1 + 61.1T + 1.36e3T^{2} \)
41 \( 1 + 9.07T + 1.68e3T^{2} \)
43 \( 1 + 7.30iT - 1.84e3T^{2} \)
47 \( 1 + 19.3iT - 2.20e3T^{2} \)
53 \( 1 - 92.1T + 2.80e3T^{2} \)
59 \( 1 + 99.2iT - 3.48e3T^{2} \)
61 \( 1 - 78.6T + 3.72e3T^{2} \)
67 \( 1 - 77.6iT - 4.48e3T^{2} \)
71 \( 1 - 43.9iT - 5.04e3T^{2} \)
73 \( 1 + 53.8T + 5.32e3T^{2} \)
79 \( 1 - 74.7iT - 6.24e3T^{2} \)
83 \( 1 + 32.5iT - 6.88e3T^{2} \)
89 \( 1 - 81.9T + 7.92e3T^{2} \)
97 \( 1 + 30.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.27890456395864134736382526767, −10.17945465877580053087217901822, −8.848768200980844320217740317506, −8.361779582413651374301447290664, −7.14201773731197661869888113690, −6.15662948415798199815158863989, −5.24001782410416655106249149361, −3.62291412141551214660322493486, −2.37394789608776277719178775859, −0.54052472070413698371622727401, 1.85721004119262984279634473062, 3.57544154818294840941504664044, 4.53854952614387676529738371593, 5.60730307768231683222680155054, 6.97764077593956896849042294250, 7.78757809077339233482127021946, 8.995273771747457484699349709066, 10.01806368367465528307738401839, 10.39014288144427584531024385603, 11.75410280041355829358709522726

Graph of the $Z$-function along the critical line