L(s) = 1 | + (0.682 − 1.87i)2-s + (−1.67 + 0.448i)3-s + (−3.06 − 2.56i)4-s + (−5.43 − 1.45i)5-s + (−0.298 + 3.45i)6-s + (3.99 + 5.74i)7-s + (−6.91 + 4.01i)8-s + (2.59 − 1.50i)9-s + (−6.44 + 9.21i)10-s + (−0.217 + 0.0582i)11-s + (6.28 + 2.91i)12-s + (−6.38 − 6.38i)13-s + (13.5 − 3.58i)14-s + 9.73·15-s + (2.83 + 15.7i)16-s + (27.4 + 15.8i)17-s + ⋯ |
L(s) = 1 | + (0.341 − 0.939i)2-s + (−0.557 + 0.149i)3-s + (−0.767 − 0.641i)4-s + (−1.08 − 0.291i)5-s + (−0.0498 + 0.575i)6-s + (0.570 + 0.821i)7-s + (−0.864 + 0.502i)8-s + (0.288 − 0.166i)9-s + (−0.644 + 0.921i)10-s + (−0.0197 + 0.00529i)11-s + (0.523 + 0.243i)12-s + (−0.491 − 0.491i)13-s + (0.966 − 0.256i)14-s + 0.649·15-s + (0.177 + 0.984i)16-s + (1.61 + 0.932i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 - 0.254i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.966 - 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.953676 + 0.123563i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.953676 + 0.123563i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.682 + 1.87i)T \) |
| 3 | \( 1 + (1.67 - 0.448i)T \) |
| 7 | \( 1 + (-3.99 - 5.74i)T \) |
good | 5 | \( 1 + (5.43 + 1.45i)T + (21.6 + 12.5i)T^{2} \) |
| 11 | \( 1 + (0.217 - 0.0582i)T + (104. - 60.5i)T^{2} \) |
| 13 | \( 1 + (6.38 + 6.38i)T + 169iT^{2} \) |
| 17 | \( 1 + (-27.4 - 15.8i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (6.66 - 24.8i)T + (-312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-12.6 + 7.30i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-21.2 + 21.2i)T - 841iT^{2} \) |
| 31 | \( 1 + (-31.3 - 18.0i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (13.0 - 48.8i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + 52.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-18.6 - 18.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-6.34 + 3.66i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (32.3 - 8.66i)T + (2.43e3 - 1.40e3i)T^{2} \) |
| 59 | \( 1 + (-13.9 - 52.0i)T + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (26.4 - 98.6i)T + (-3.22e3 - 1.86e3i)T^{2} \) |
| 67 | \( 1 + (29.2 + 109. i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 54.0iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (71.4 - 123. i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-34.1 - 59.1i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-65.3 - 65.3i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-31.3 - 54.2i)T + (-3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 - 37.0iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.68921524101370331605393095549, −10.52228942206345666259277343342, −9.939302407129990094422844452790, −8.464185264949971030700770417165, −7.971648417263858476588042954068, −6.10787898699920156020101717822, −5.17757408621500832248789286305, −4.26099691718638864662806902858, −3.07846613388749155493983640300, −1.27858961795126821360827328713,
0.50482227178564578412594580925, 3.31345273241898764303067846365, 4.49966455634076815425814086108, 5.20786783214089182989231991071, 6.74762094743103877898443089930, 7.34951054014435684793948374911, 7.990767502122133028150475243511, 9.270762134478096197895537799274, 10.49183725933680284449279356363, 11.59785063414080270802442127661