L(s) = 1 | + (1.99 − 0.198i)2-s + (0.448 − 1.67i)3-s + (3.92 − 0.790i)4-s + (−2.42 − 9.06i)5-s + (0.559 − 3.41i)6-s + (6.77 + 1.75i)7-s + (7.64 − 2.35i)8-s + (−2.59 − 1.50i)9-s + (−6.63 − 17.5i)10-s + (−4.03 + 15.0i)11-s + (0.435 − 6.91i)12-s + (−8.68 − 8.68i)13-s + (13.8 + 2.14i)14-s − 16.2·15-s + (14.7 − 6.19i)16-s + (12.8 − 7.40i)17-s + ⋯ |
L(s) = 1 | + (0.995 − 0.0993i)2-s + (0.149 − 0.557i)3-s + (0.980 − 0.197i)4-s + (−0.485 − 1.81i)5-s + (0.0933 − 0.569i)6-s + (0.968 + 0.250i)7-s + (0.955 − 0.294i)8-s + (−0.288 − 0.166i)9-s + (−0.663 − 1.75i)10-s + (−0.366 + 1.36i)11-s + (0.0362 − 0.576i)12-s + (−0.668 − 0.668i)13-s + (0.988 + 0.153i)14-s − 1.08·15-s + (0.921 − 0.387i)16-s + (0.754 − 0.435i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.112 + 0.993i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.112 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.10267 - 2.35450i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10267 - 2.35450i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.99 + 0.198i)T \) |
| 3 | \( 1 + (-0.448 + 1.67i)T \) |
| 7 | \( 1 + (-6.77 - 1.75i)T \) |
good | 5 | \( 1 + (2.42 + 9.06i)T + (-21.6 + 12.5i)T^{2} \) |
| 11 | \( 1 + (4.03 - 15.0i)T + (-104. - 60.5i)T^{2} \) |
| 13 | \( 1 + (8.68 + 8.68i)T + 169iT^{2} \) |
| 17 | \( 1 + (-12.8 + 7.40i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (17.5 - 4.71i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-8.25 - 4.76i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-28.7 + 28.7i)T - 841iT^{2} \) |
| 31 | \( 1 + (3.46 - 2.00i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (0.945 - 0.253i)T + (1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 - 23.1T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-21.1 - 21.1i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-72.7 - 42.0i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (5.61 - 20.9i)T + (-2.43e3 - 1.40e3i)T^{2} \) |
| 59 | \( 1 + (-18.2 - 4.88i)T + (3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (106. - 28.6i)T + (3.22e3 - 1.86e3i)T^{2} \) |
| 67 | \( 1 + (-7.92 - 2.12i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 22.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-16.6 - 28.8i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-10.9 + 19.0i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (98.1 + 98.1i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-46.7 + 80.9i)T + (-3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 114. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.63854767376167300918648143193, −10.30913702284962092271940284766, −9.092237004605242060321690561175, −7.82478749455229000930153786389, −7.59313482791588231978626254872, −5.80248401098661173223367508219, −4.87860083398574241139059160250, −4.35091559180002632251383968716, −2.39100282775219530088144949923, −1.15483131211521952497413770690,
2.44392626667956025845859026665, 3.39421564864430878938929532059, 4.34930127842844411507369099890, 5.63332861490033743680950105366, 6.70785796399345561961537088609, 7.56193974423994129599252096908, 8.484990838077491640944287217963, 10.36230406561641774620906118084, 10.82039566360470630775960632719, 11.36853501274947813155454684352