L(s) = 1 | + (−2.81 − 1.04i)3-s + (5.12 − 2.95i)5-s + 7·7-s + (6.81 + 5.88i)9-s + (−5.12 − 2.95i)11-s − 6·13-s + (−17.5 + 2.95i)15-s + (5.12 + 2.95i)17-s + (11.5 + 19.9i)19-s + (−19.6 − 7.32i)21-s + (35.8 − 20.7i)23-s + (4.99 − 8.66i)25-s + (−13 − 23.6i)27-s − 47.3i·29-s + (19.5 − 33.7i)31-s + ⋯ |
L(s) = 1 | + (−0.937 − 0.348i)3-s + (1.02 − 0.591i)5-s + 7-s + (0.756 + 0.653i)9-s + (−0.465 − 0.268i)11-s − 0.461·13-s + (−1.16 + 0.197i)15-s + (0.301 + 0.174i)17-s + (0.605 + 1.04i)19-s + (−0.937 − 0.348i)21-s + (1.55 − 0.900i)23-s + (0.199 − 0.346i)25-s + (−0.481 − 0.876i)27-s − 1.63i·29-s + (0.629 − 1.08i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.587 + 0.809i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.587 + 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.42522 - 0.726767i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42522 - 0.726767i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.81 + 1.04i)T \) |
| 7 | \( 1 - 7T \) |
good | 5 | \( 1 + (-5.12 + 2.95i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (5.12 + 2.95i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 6T + 169T^{2} \) |
| 17 | \( 1 + (-5.12 - 2.95i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-11.5 - 19.9i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-35.8 + 20.7i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 47.3iT - 841T^{2} \) |
| 31 | \( 1 + (-19.5 + 33.7i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (23.5 + 40.7i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 - 22T + 1.84e3T^{2} \) |
| 47 | \( 1 + (46.1 - 26.6i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-46.1 - 26.6i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (87.0 + 50.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-40.5 - 70.1i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-15.5 + 26.8i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 94.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-8.5 + 14.7i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (4.5 + 7.79i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 47.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (76.8 - 44.3i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 82T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22799094891585671110027010966, −10.35714869273755704129173371979, −9.512767610629731907277347949739, −8.243696968035302039260589854820, −7.38903821635729287911530657492, −6.00616644643301006222185572005, −5.39580350803358917174411727759, −4.48648506216732112071238294756, −2.22749338205446606199014036415, −0.986619909247010685214120289553,
1.40676459833500292294384032035, 3.02987239832140530192295336463, 5.03030738172243988974143934459, 5.18287401785605762553926936057, 6.66256115499451033084996184513, 7.34446780973243824290856334649, 8.903077899672403838237453096426, 9.860541276293302715088638470444, 10.61578373479664510692192896950, 11.28626366574210421588326380822