Properties

Label 8-336e4-1.1-c1e4-0-0
Degree $8$
Conductor $12745506816$
Sign $1$
Analytic cond. $51.8161$
Root an. cond. $1.63797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 8·25-s − 8·37-s − 16·43-s − 2·49-s − 32·67-s + 40·79-s − 9·81-s + 40·109-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 40·169-s + 173-s − 32·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 1.51·7-s − 8/5·25-s − 1.31·37-s − 2.43·43-s − 2/7·49-s − 3.90·67-s + 4.50·79-s − 81-s + 3.83·109-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.07·169-s + 0.0760·173-s − 2.41·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(51.8161\)
Root analytic conductor: \(1.63797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.881849603\)
\(L(\frac12)\) \(\approx\) \(1.881849603\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 160 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.426063234914175552557143546419, −7.938365505532690691356189839986, −7.84871572056237082647927920266, −7.81058150602872162967003352215, −7.62705283706085861903720060917, −7.05267284069483291157687083712, −6.90414700101438436501067259618, −6.55128237827114139699749106896, −6.51285685121673954177423338479, −5.91120795892137436695666300086, −5.80875260929584413150654407164, −5.50645077544372047248198777221, −5.20608877605035818750003235730, −4.94668590781300491066236269412, −4.55861039427786597827888222785, −4.40753613167286934145771029347, −4.28279746559816202868099994921, −3.45656050005144128874871781220, −3.37876141762368388962096398358, −3.28162586125802272383561467627, −2.59495993088035092259271760076, −1.87172257433213335813484438276, −1.84416854678432403621113722917, −1.65291751012374252963680031852, −0.57760659627357354396129654729, 0.57760659627357354396129654729, 1.65291751012374252963680031852, 1.84416854678432403621113722917, 1.87172257433213335813484438276, 2.59495993088035092259271760076, 3.28162586125802272383561467627, 3.37876141762368388962096398358, 3.45656050005144128874871781220, 4.28279746559816202868099994921, 4.40753613167286934145771029347, 4.55861039427786597827888222785, 4.94668590781300491066236269412, 5.20608877605035818750003235730, 5.50645077544372047248198777221, 5.80875260929584413150654407164, 5.91120795892137436695666300086, 6.51285685121673954177423338479, 6.55128237827114139699749106896, 6.90414700101438436501067259618, 7.05267284069483291157687083712, 7.62705283706085861903720060917, 7.81058150602872162967003352215, 7.84871572056237082647927920266, 7.938365505532690691356189839986, 8.426063234914175552557143546419

Graph of the $Z$-function along the critical line