| L(s) = 1 | + (−1.41 + 0.0322i)2-s + (−0.258 + 0.965i)3-s + (1.99 − 0.0911i)4-s + (−3.59 + 0.963i)5-s + (0.334 − 1.37i)6-s + (−1.51 + 2.17i)7-s + (−2.82 + 0.193i)8-s + (−0.866 − 0.499i)9-s + (5.05 − 1.47i)10-s + (1.57 − 5.88i)11-s + (−0.429 + 1.95i)12-s + (1.44 − 1.44i)13-s + (2.06 − 3.11i)14-s − 3.72i·15-s + (3.98 − 0.364i)16-s + (0.926 − 0.535i)17-s + ⋯ |
| L(s) = 1 | + (−0.999 + 0.0227i)2-s + (−0.149 + 0.557i)3-s + (0.998 − 0.0455i)4-s + (−1.60 + 0.430i)5-s + (0.136 − 0.560i)6-s + (−0.571 + 0.820i)7-s + (−0.997 + 0.0683i)8-s + (−0.288 − 0.166i)9-s + (1.59 − 0.467i)10-s + (0.475 − 1.77i)11-s + (−0.123 + 0.563i)12-s + (0.400 − 0.400i)13-s + (0.552 − 0.833i)14-s − 0.961i·15-s + (0.995 − 0.0910i)16-s + (0.224 − 0.129i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0111 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0111 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.175008 - 0.173072i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.175008 - 0.173072i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.41 - 0.0322i)T \) |
| 3 | \( 1 + (0.258 - 0.965i)T \) |
| 7 | \( 1 + (1.51 - 2.17i)T \) |
| good | 5 | \( 1 + (3.59 - 0.963i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-1.57 + 5.88i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-1.44 + 1.44i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.926 + 0.535i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.70 - 0.457i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.427 + 0.740i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.0115 + 0.0115i)T + 29iT^{2} \) |
| 31 | \( 1 + (3.35 + 5.81i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.15 + 4.32i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 3.89T + 41T^{2} \) |
| 43 | \( 1 + (9.03 + 9.03i)T + 43iT^{2} \) |
| 47 | \( 1 + (6.12 - 10.6i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.21 - 0.862i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (7.81 + 2.09i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (2.30 + 8.61i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (4.61 + 1.23i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 4.06T + 71T^{2} \) |
| 73 | \( 1 + (-7.61 - 13.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.61 - 0.932i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.97 + 4.97i)T + 83iT^{2} \) |
| 89 | \( 1 + (-0.259 + 0.449i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.22iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25092018615743590853998740987, −10.57024847446963518678246254797, −9.279054526947300103283672279869, −8.541529575082185668298375761850, −7.85059782947173703277355170110, −6.56108924851700807643482945367, −5.70632113148532218105016305331, −3.72688701518445107726741414848, −3.03306530217546482159092797641, −0.25395448251277399283679138910,
1.44562771044322179921572771224, 3.45232488393580675214851547419, 4.60238279023233634969966199075, 6.61263897380887401262947408748, 7.17149219042097342763001974363, 7.900657094500560030510851714050, 8.863226810009829382716592506262, 9.903911678658834385451632710656, 10.87670777892813579823242332188, 11.83999713615092886163114738051