L(s) = 1 | + (1.21 − 1.22i)3-s + (−1.40 + 2.43i)5-s + (2.08 + 1.62i)7-s + (−0.0238 − 2.99i)9-s + (4.74 − 2.74i)11-s + 1.35i·13-s + (1.27 + 4.69i)15-s + (2.88 + 5.00i)17-s + (−1.71 − 0.992i)19-s + (4.54 − 0.579i)21-s + (−2.09 − 1.21i)23-s + (−1.44 − 2.49i)25-s + (−3.71 − 3.63i)27-s − 7.05i·29-s + (3.07 − 1.77i)31-s + ⋯ |
L(s) = 1 | + (0.704 − 0.709i)3-s + (−0.627 + 1.08i)5-s + (0.788 + 0.615i)7-s + (−0.00795 − 0.999i)9-s + (1.43 − 0.826i)11-s + 0.376i·13-s + (0.329 + 1.21i)15-s + (0.700 + 1.21i)17-s + (−0.394 − 0.227i)19-s + (0.991 − 0.126i)21-s + (−0.437 − 0.252i)23-s + (−0.288 − 0.499i)25-s + (−0.715 − 0.698i)27-s − 1.31i·29-s + (0.552 − 0.318i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.000124i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.000124i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.68490 + 0.000104851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.68490 + 0.000104851i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.21 + 1.22i)T \) |
| 7 | \( 1 + (-2.08 - 1.62i)T \) |
good | 5 | \( 1 + (1.40 - 2.43i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.74 + 2.74i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 1.35iT - 13T^{2} \) |
| 17 | \( 1 + (-2.88 - 5.00i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.71 + 0.992i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.09 + 1.21i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 7.05iT - 29T^{2} \) |
| 31 | \( 1 + (-3.07 + 1.77i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.14 - 3.71i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 1.81T + 41T^{2} \) |
| 43 | \( 1 + 11.2T + 43T^{2} \) |
| 47 | \( 1 + (-0.201 + 0.348i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.28 - 3.04i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.28 + 2.22i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.75 + 2.74i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.45 + 5.97i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.08iT - 71T^{2} \) |
| 73 | \( 1 + (0.295 - 0.170i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.19 - 2.06i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.8T + 83T^{2} \) |
| 89 | \( 1 + (0.576 - 0.998i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 16.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74843076488367753402519792953, −10.85198988349923257001671848582, −9.542327867340186099285504712918, −8.423524644253429013761306770640, −7.977986157760903711391396429246, −6.69892168033533389524293677377, −6.10924955841441549340211703221, −4.10536085983246885683666185475, −3.14953301750493780611651477647, −1.71651202358446154606198578513,
1.48796186236915409679844702052, 3.52591270455430819486177588856, 4.48331063650910277451485600158, 5.10975409359444917876040952996, 7.06255956338600053682262677629, 7.973160725232823749244837395493, 8.759016344798610593559738223117, 9.566244413399635868944938173884, 10.49931033033028602131759383053, 11.67962292133190185009537363376