Properties

Label 8-336e4-1.1-c1e4-0-3
Degree $8$
Conductor $12745506816$
Sign $1$
Analytic cond. $51.8161$
Root an. cond. $1.63797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·7-s − 3·9-s − 12·19-s + 7·25-s + 6·31-s + 4·37-s + 32·43-s + 61·49-s − 30·63-s + 4·67-s + 24·73-s − 2·79-s + 12·103-s + 4·109-s − 13·121-s + 127-s + 131-s − 120·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 28·169-s + 36·171-s + ⋯
L(s)  = 1  + 3.77·7-s − 9-s − 2.75·19-s + 7/5·25-s + 1.07·31-s + 0.657·37-s + 4.87·43-s + 61/7·49-s − 3.77·63-s + 0.488·67-s + 2.80·73-s − 0.225·79-s + 1.18·103-s + 0.383·109-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s − 10.4·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.15·169-s + 2.75·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(51.8161\)
Root analytic conductor: \(1.63797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.472531192\)
\(L(\frac12)\) \(\approx\) \(3.472531192\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
good5$C_2^3$ \( 1 - 7 T^{2} + 24 T^{4} - 7 p^{2} T^{6} + p^{4} T^{8} \) 4.5.a_ah_a_y
11$C_2^3$ \( 1 + 13 T^{2} + 48 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_n_a_bw
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \) 4.13.a_abc_a_uo
17$C_2^3$ \( 1 - 22 T^{2} + 195 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \) 4.17.a_aw_a_hn
19$C_2$ \( ( 1 - T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \) 4.19.m_du_xc_enj
23$C_2^3$ \( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_k_a_aqn
29$C_2^2$ \( ( 1 - 49 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_adu_a_gbb
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \) 4.31.ag_cz_apa_fjw
37$C_2^2$ \( ( 1 - 2 T - 33 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.37.ae_ack_aq_gcp
41$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \) 4.41.a_cq_a_gru
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \) 4.43.abg_vk_ajdo_ctik
47$C_2^3$ \( 1 - 46 T^{2} - 93 T^{4} - 46 p^{2} T^{6} + p^{4} T^{8} \) 4.47.a_abu_a_adp
53$C_2^3$ \( 1 + 25 T^{2} - 2184 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8} \) 4.53.a_z_a_adga
59$C_2^3$ \( 1 - 115 T^{2} + 9744 T^{4} - 115 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_ael_a_oku
61$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_es_a_qnj
67$C_2^2$ \( ( 1 - 2 T - 63 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.67.ae_aes_aq_typ
71$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_e_a_oxy
73$C_2^2$ \( ( 1 - 12 T + 121 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.ay_ow_agxc_cqnr
79$C_2^2$ \( ( 1 + T - 78 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \) 4.79.c_afz_c_bbse
83$C_2^2$ \( ( 1 + 91 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_ha_a_bgql
89$C_2^3$ \( 1 - 70 T^{2} - 3021 T^{4} - 70 p^{2} T^{6} + p^{4} T^{8} \) 4.89.a_acs_a_aemf
97$C_2$ \( ( 1 - 19 T + p T^{2} )^{2}( 1 + 19 T + p T^{2} )^{2} \) 4.97.a_amw_a_crcl
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.434433031687612729550020157324, −8.086120145241144515194198703059, −8.067934343432161241054448447716, −7.64455764971259306105257355115, −7.59966122631732781563735896525, −7.34262224233321903882717503206, −6.71044161535958250028334164301, −6.70890832276067215807618294663, −6.33635423387891132184298810170, −6.00076783053197475316371868028, −5.63666079382176366352863989216, −5.50529876586778317533940923165, −5.28755084966074291581227900464, −4.77255271040090010641930647368, −4.56842575147709646841048389374, −4.52399597871888444051520260104, −4.20633735695541841148947083885, −3.89850917740199073788705009239, −3.50522863587242324256290191617, −2.60830990057005144687847213990, −2.44087620048846942370061215593, −2.37458407069019780200715189050, −1.96256300809264731868526966723, −1.07558526971039686071547525448, −1.04784546751905315534518203223, 1.04784546751905315534518203223, 1.07558526971039686071547525448, 1.96256300809264731868526966723, 2.37458407069019780200715189050, 2.44087620048846942370061215593, 2.60830990057005144687847213990, 3.50522863587242324256290191617, 3.89850917740199073788705009239, 4.20633735695541841148947083885, 4.52399597871888444051520260104, 4.56842575147709646841048389374, 4.77255271040090010641930647368, 5.28755084966074291581227900464, 5.50529876586778317533940923165, 5.63666079382176366352863989216, 6.00076783053197475316371868028, 6.33635423387891132184298810170, 6.70890832276067215807618294663, 6.71044161535958250028334164301, 7.34262224233321903882717503206, 7.59966122631732781563735896525, 7.64455764971259306105257355115, 8.067934343432161241054448447716, 8.086120145241144515194198703059, 8.434433031687612729550020157324

Graph of the $Z$-function along the critical line