L(s) = 1 | − 2·2-s + 3·4-s + 2·5-s − 6·7-s − 4·8-s + 2·9-s − 4·10-s + 8·13-s + 12·14-s + 5·16-s + 4·17-s − 4·18-s + 4·19-s + 6·20-s + 12·23-s − 5·25-s − 16·26-s − 18·28-s + 8·29-s − 10·31-s − 6·32-s − 8·34-s − 12·35-s + 6·36-s − 6·37-s − 8·38-s − 8·40-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.894·5-s − 2.26·7-s − 1.41·8-s + 2/3·9-s − 1.26·10-s + 2.21·13-s + 3.20·14-s + 5/4·16-s + 0.970·17-s − 0.942·18-s + 0.917·19-s + 1.34·20-s + 2.50·23-s − 25-s − 3.13·26-s − 3.40·28-s + 1.48·29-s − 1.79·31-s − 1.06·32-s − 1.37·34-s − 2.02·35-s + 36-s − 0.986·37-s − 1.29·38-s − 1.26·40-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 111556 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 111556 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9137859341\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9137859341\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40862124668015476417861597307, −11.25831855571234334024248018304, −10.63836262376064049293827407208, −10.27675099742077063652552279128, −9.797943074436980854110866835969, −9.427982635605966008212835267409, −9.220763079702653755822206274757, −8.804495338373476011558112604988, −8.105460500173576049875070469091, −7.48843041404042231470088965312, −7.01382435850729352939952586464, −6.54972548942487316992370508552, −6.07967418279830285609275530825, −5.85110692940051632916534747545, −5.03775345127947808510550751681, −3.72695237079035098531648530366, −3.30740996308260878574767635524, −2.90683106087226640508775420160, −1.62732020919446501342281036349, −0.936687410837248384545522995092,
0.936687410837248384545522995092, 1.62732020919446501342281036349, 2.90683106087226640508775420160, 3.30740996308260878574767635524, 3.72695237079035098531648530366, 5.03775345127947808510550751681, 5.85110692940051632916534747545, 6.07967418279830285609275530825, 6.54972548942487316992370508552, 7.01382435850729352939952586464, 7.48843041404042231470088965312, 8.105460500173576049875070469091, 8.804495338373476011558112604988, 9.220763079702653755822206274757, 9.427982635605966008212835267409, 9.797943074436980854110866835969, 10.27675099742077063652552279128, 10.63836262376064049293827407208, 11.25831855571234334024248018304, 11.40862124668015476417861597307