Properties

Label 2-3330-5.4-c1-0-43
Degree $2$
Conductor $3330$
Sign $i$
Analytic cond. $26.5901$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 2.23i·5-s + 2i·7-s + i·8-s − 2.23·10-s − 5.23·11-s + 4.47i·13-s + 2·14-s + 16-s − 4.47i·17-s + 7.23·19-s + 2.23i·20-s + 5.23i·22-s + 4i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 0.999i·5-s + 0.755i·7-s + 0.353i·8-s − 0.707·10-s − 1.57·11-s + 1.24i·13-s + 0.534·14-s + 0.250·16-s − 1.08i·17-s + 1.66·19-s + 0.499i·20-s + 1.11i·22-s + 0.834i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $i$
Analytic conductor: \(26.5901\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3330} (1999, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3330,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.420816441\)
\(L(\frac12)\) \(\approx\) \(1.420816441\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 + 2.23iT \)
37 \( 1 - iT \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 5.23T + 11T^{2} \)
13 \( 1 - 4.47iT - 13T^{2} \)
17 \( 1 + 4.47iT - 17T^{2} \)
19 \( 1 - 7.23T + 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 + 2.47T + 31T^{2} \)
41 \( 1 - 4.47T + 41T^{2} \)
43 \( 1 + 10.4iT - 43T^{2} \)
47 \( 1 + 9.70iT - 47T^{2} \)
53 \( 1 - 12.4iT - 53T^{2} \)
59 \( 1 - 6.94T + 59T^{2} \)
61 \( 1 - 5.23T + 61T^{2} \)
67 \( 1 + 10.4iT - 67T^{2} \)
71 \( 1 - 2.47T + 71T^{2} \)
73 \( 1 + 10.4iT - 73T^{2} \)
79 \( 1 - 2.47T + 79T^{2} \)
83 \( 1 + 15.4iT - 83T^{2} \)
89 \( 1 + 7.52T + 89T^{2} \)
97 \( 1 + 8.18iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.742583358941832234447544254885, −7.75705296179486079336464154616, −7.21726788708239249741021525553, −5.78973490497174609946241737075, −5.22357961710516906834780620057, −4.75483743473493346713781054592, −3.62297148162441168103154543617, −2.65306684101555539982342420554, −1.86166759101041526326162381819, −0.59691103476414835289244080956, 0.837008822747586868315898469466, 2.58306430623257398393348543256, 3.24857849580034438004674644354, 4.19264849169388590343702379301, 5.26813406530271218581767132734, 5.77052819544889488138933863213, 6.68292666642709742407372940676, 7.41144431142396458122593068636, 7.919602257844620690474166662780, 8.395329708366328418594556904941

Graph of the $Z$-function along the critical line