Properties

Label 2-3325-1.1-c1-0-25
Degree $2$
Conductor $3325$
Sign $1$
Analytic cond. $26.5502$
Root an. cond. $5.15269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0903·2-s + 1.28·3-s − 1.99·4-s + 0.116·6-s − 7-s − 0.360·8-s − 1.34·9-s − 3.84·11-s − 2.56·12-s − 5.39·13-s − 0.0903·14-s + 3.95·16-s + 5.02·17-s − 0.121·18-s + 19-s − 1.28·21-s − 0.347·22-s − 3.96·23-s − 0.463·24-s − 0.487·26-s − 5.58·27-s + 1.99·28-s + 3.29·29-s + 10.0·31-s + 1.07·32-s − 4.94·33-s + 0.454·34-s + ⋯
L(s)  = 1  + 0.0638·2-s + 0.742·3-s − 0.995·4-s + 0.0474·6-s − 0.377·7-s − 0.127·8-s − 0.449·9-s − 1.15·11-s − 0.739·12-s − 1.49·13-s − 0.0241·14-s + 0.987·16-s + 1.21·17-s − 0.0286·18-s + 0.229·19-s − 0.280·21-s − 0.0740·22-s − 0.827·23-s − 0.0946·24-s − 0.0955·26-s − 1.07·27-s + 0.376·28-s + 0.612·29-s + 1.81·31-s + 0.190·32-s − 0.860·33-s + 0.0779·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3325\)    =    \(5^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(26.5502\)
Root analytic conductor: \(5.15269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3325,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.206878811\)
\(L(\frac12)\) \(\approx\) \(1.206878811\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 - 0.0903T + 2T^{2} \)
3 \( 1 - 1.28T + 3T^{2} \)
11 \( 1 + 3.84T + 11T^{2} \)
13 \( 1 + 5.39T + 13T^{2} \)
17 \( 1 - 5.02T + 17T^{2} \)
23 \( 1 + 3.96T + 23T^{2} \)
29 \( 1 - 3.29T + 29T^{2} \)
31 \( 1 - 10.0T + 31T^{2} \)
37 \( 1 - 6.57T + 37T^{2} \)
41 \( 1 - 1.87T + 41T^{2} \)
43 \( 1 + 12.7T + 43T^{2} \)
47 \( 1 + 1.55T + 47T^{2} \)
53 \( 1 - 1.75T + 53T^{2} \)
59 \( 1 - 11.1T + 59T^{2} \)
61 \( 1 - 7.63T + 61T^{2} \)
67 \( 1 - 3.88T + 67T^{2} \)
71 \( 1 - 14.6T + 71T^{2} \)
73 \( 1 + 3.49T + 73T^{2} \)
79 \( 1 - 3.22T + 79T^{2} \)
83 \( 1 - 15.4T + 83T^{2} \)
89 \( 1 + 11.3T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.323029029064266280522414310711, −8.171473623171342095636897810349, −7.45614937122831451062978961982, −6.30550053912041845241646104724, −5.33050624706095629007337442839, −4.92769335164903701212022166751, −3.83713506873554700286965886375, −2.99407529075019634183731951074, −2.38326645837094592367399006627, −0.60191257831182200909378466425, 0.60191257831182200909378466425, 2.38326645837094592367399006627, 2.99407529075019634183731951074, 3.83713506873554700286965886375, 4.92769335164903701212022166751, 5.33050624706095629007337442839, 6.30550053912041845241646104724, 7.45614937122831451062978961982, 8.171473623171342095636897810349, 8.323029029064266280522414310711

Graph of the $Z$-function along the critical line