Properties

Label 8-3325e4-1.1-c0e4-0-3
Degree $8$
Conductor $1.222\times 10^{14}$
Sign $1$
Analytic cond. $7.58219$
Root an. cond. $1.28817$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 6·8-s − 9-s + 9·16-s − 2·18-s + 2·23-s + 2·29-s + 12·32-s − 3·36-s + 2·43-s + 4·46-s − 2·49-s − 2·53-s + 4·58-s + 18·64-s + 2·67-s + 2·71-s − 6·72-s − 2·79-s + 81-s + 4·86-s + 6·92-s − 4·98-s − 4·106-s − 2·109-s + 6·116-s + ⋯
L(s)  = 1  + 2·2-s + 3·4-s + 6·8-s − 9-s + 9·16-s − 2·18-s + 2·23-s + 2·29-s + 12·32-s − 3·36-s + 2·43-s + 4·46-s − 2·49-s − 2·53-s + 4·58-s + 18·64-s + 2·67-s + 2·71-s − 6·72-s − 2·79-s + 81-s + 4·86-s + 6·92-s − 4·98-s − 4·106-s − 2·109-s + 6·116-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 7^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(7.58219\)
Root analytic conductor: \(1.28817\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 7^{4} \cdot 19^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(11.52629487\)
\(L(\frac12)\) \(\approx\) \(11.52629487\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
3$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
73$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.34237091326633611909591400426, −6.15230391453101040127840736921, −5.89477856955535634630726249703, −5.55326166545353886670759470751, −5.25588961940768371687845900792, −5.24638965835726173611439024198, −5.04869304506502124769676075473, −5.01706190421377479453231593470, −4.57308321619919983010699535753, −4.55557331660561406484962789940, −4.44681207456185574862429486293, −4.02207271142660810895031190101, −3.83042628948605678523422784734, −3.76808270074199058938458993616, −3.26439295275036186741243136334, −3.20623443429358315264368234419, −3.12426495926518023482513496750, −2.51811657700276933781732618926, −2.45724450838127310295939510109, −2.43594612062428132372307050059, −2.15303723599166400292413236554, −1.55608067127091957716119999056, −1.31604140028686303302005269770, −1.16727694661583158975956485704, −0.985884300197015964115202877043, 0.985884300197015964115202877043, 1.16727694661583158975956485704, 1.31604140028686303302005269770, 1.55608067127091957716119999056, 2.15303723599166400292413236554, 2.43594612062428132372307050059, 2.45724450838127310295939510109, 2.51811657700276933781732618926, 3.12426495926518023482513496750, 3.20623443429358315264368234419, 3.26439295275036186741243136334, 3.76808270074199058938458993616, 3.83042628948605678523422784734, 4.02207271142660810895031190101, 4.44681207456185574862429486293, 4.55557331660561406484962789940, 4.57308321619919983010699535753, 5.01706190421377479453231593470, 5.04869304506502124769676075473, 5.24638965835726173611439024198, 5.25588961940768371687845900792, 5.55326166545353886670759470751, 5.89477856955535634630726249703, 6.15230391453101040127840736921, 6.34237091326633611909591400426

Graph of the $Z$-function along the critical line