L(s) = 1 | + (−0.156 − 0.987i)2-s + (0.891 − 0.453i)3-s + (−0.951 + 0.309i)4-s + (1.66 − 1.48i)5-s + (−0.587 − 0.809i)6-s + (0.949 − 1.86i)7-s + (0.453 + 0.891i)8-s + (0.587 − 0.809i)9-s + (−1.73 − 1.41i)10-s + (−2.52 + 2.14i)11-s + (−0.707 + 0.707i)12-s + (2.76 − 0.437i)13-s + (−1.98 − 0.646i)14-s + (0.811 − 2.08i)15-s + (0.809 − 0.587i)16-s + (−1.45 − 0.230i)17-s + ⋯ |
L(s) = 1 | + (−0.110 − 0.698i)2-s + (0.514 − 0.262i)3-s + (−0.475 + 0.154i)4-s + (0.746 − 0.665i)5-s + (−0.239 − 0.330i)6-s + (0.358 − 0.704i)7-s + (0.160 + 0.315i)8-s + (0.195 − 0.269i)9-s + (−0.547 − 0.447i)10-s + (−0.761 + 0.647i)11-s + (−0.204 + 0.204i)12-s + (0.766 − 0.121i)13-s + (−0.531 − 0.172i)14-s + (0.209 − 0.538i)15-s + (0.202 − 0.146i)16-s + (−0.353 − 0.0559i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.132 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.132 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03721 - 1.18464i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03721 - 1.18464i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.156 + 0.987i)T \) |
| 3 | \( 1 + (-0.891 + 0.453i)T \) |
| 5 | \( 1 + (-1.66 + 1.48i)T \) |
| 11 | \( 1 + (2.52 - 2.14i)T \) |
good | 7 | \( 1 + (-0.949 + 1.86i)T + (-4.11 - 5.66i)T^{2} \) |
| 13 | \( 1 + (-2.76 + 0.437i)T + (12.3 - 4.01i)T^{2} \) |
| 17 | \( 1 + (1.45 + 0.230i)T + (16.1 + 5.25i)T^{2} \) |
| 19 | \( 1 + (0.188 - 0.579i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (1.38 + 1.38i)T + 23iT^{2} \) |
| 29 | \( 1 + (0.516 + 1.59i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.30 - 0.946i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-8.78 - 4.47i)T + (21.7 + 29.9i)T^{2} \) |
| 41 | \( 1 + (10.0 + 3.26i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (8.33 - 8.33i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.91 - 5.71i)T + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (-0.606 - 3.83i)T + (-50.4 + 16.3i)T^{2} \) |
| 59 | \( 1 + (-11.3 + 3.70i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.09 - 1.50i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-6.10 + 6.10i)T - 67iT^{2} \) |
| 71 | \( 1 + (9.05 - 6.58i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-9.99 - 5.09i)T + (42.9 + 59.0i)T^{2} \) |
| 79 | \( 1 + (-2.25 - 1.63i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (2.12 - 13.4i)T + (-78.9 - 25.6i)T^{2} \) |
| 89 | \( 1 + 1.07iT - 89T^{2} \) |
| 97 | \( 1 + (-8.60 + 1.36i)T + (92.2 - 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27017448068401069462426160588, −10.26106244088264593898608502914, −9.651168477784024006998514974046, −8.525356022331491436418526452866, −7.87547634719166833081852549266, −6.50261556593851407553308232660, −5.09618218136168253867567431186, −4.09352533014869190763015258036, −2.53174956021685336983709977085, −1.28661500905936987212500279814,
2.18182635534860274313368798894, 3.53621276433266580068222007200, 5.15634813460494510791882596286, 5.95837462995855850707803737373, 7.01175790573329641672253180137, 8.238382327276894866284275904334, 8.826768390605521957678419436865, 9.875542342316208293210399931004, 10.69839035013439188990844997590, 11.67767026121455730514084091073