L(s) = 1 | + (−0.987 + 0.156i)2-s + (−0.453 − 0.891i)3-s + (0.951 − 0.309i)4-s + (−1.68 − 1.47i)5-s + (0.587 + 0.809i)6-s + (4.48 + 2.28i)7-s + (−0.891 + 0.453i)8-s + (−0.587 + 0.809i)9-s + (1.89 + 1.19i)10-s + (1.10 + 3.12i)11-s + (−0.707 − 0.707i)12-s + (−0.566 − 3.57i)13-s + (−4.78 − 1.55i)14-s + (−0.547 + 2.16i)15-s + (0.809 − 0.587i)16-s + (1.03 − 6.53i)17-s + ⋯ |
L(s) = 1 | + (−0.698 + 0.110i)2-s + (−0.262 − 0.514i)3-s + (0.475 − 0.154i)4-s + (−0.752 − 0.658i)5-s + (0.239 + 0.330i)6-s + (1.69 + 0.863i)7-s + (−0.315 + 0.160i)8-s + (−0.195 + 0.269i)9-s + (0.598 + 0.376i)10-s + (0.334 + 0.942i)11-s + (−0.204 − 0.204i)12-s + (−0.157 − 0.992i)13-s + (−1.27 − 0.415i)14-s + (−0.141 + 0.559i)15-s + (0.202 − 0.146i)16-s + (0.250 − 1.58i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.670 + 0.741i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.670 + 0.741i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.844884 - 0.375274i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.844884 - 0.375274i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.987 - 0.156i)T \) |
| 3 | \( 1 + (0.453 + 0.891i)T \) |
| 5 | \( 1 + (1.68 + 1.47i)T \) |
| 11 | \( 1 + (-1.10 - 3.12i)T \) |
good | 7 | \( 1 + (-4.48 - 2.28i)T + (4.11 + 5.66i)T^{2} \) |
| 13 | \( 1 + (0.566 + 3.57i)T + (-12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (-1.03 + 6.53i)T + (-16.1 - 5.25i)T^{2} \) |
| 19 | \( 1 + (-1.27 + 3.93i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-4.60 + 4.60i)T - 23iT^{2} \) |
| 29 | \( 1 + (-1.62 - 5.01i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (2.62 + 1.90i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.809 + 1.58i)T + (-21.7 - 29.9i)T^{2} \) |
| 41 | \( 1 + (-0.559 - 0.181i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (1.68 + 1.68i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.59 + 1.32i)T + (27.6 - 38.0i)T^{2} \) |
| 53 | \( 1 + (-1.11 + 0.176i)T + (50.4 - 16.3i)T^{2} \) |
| 59 | \( 1 + (-3.47 + 1.13i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (1.62 + 2.22i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (3.30 + 3.30i)T + 67iT^{2} \) |
| 71 | \( 1 + (8.21 - 5.96i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (1.05 - 2.06i)T + (-42.9 - 59.0i)T^{2} \) |
| 79 | \( 1 + (-7.99 - 5.80i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (8.51 + 1.34i)T + (78.9 + 25.6i)T^{2} \) |
| 89 | \( 1 - 11.3iT - 89T^{2} \) |
| 97 | \( 1 + (-0.0938 - 0.592i)T + (-92.2 + 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.55318849341587392092770476949, −10.76178842235635437468673864811, −9.260535263069598414010683378902, −8.593041376114213593840800543909, −7.67796460938699181762078892911, −7.08984196539176854362040716533, −5.27902129491547185973383184607, −4.83211189401928977353411312585, −2.53980532832024301650138871294, −1.02323325272924642671250545320,
1.46294258674333493402969766753, 3.55815899181569637818975245815, 4.40374196030157934406982075912, 5.93282054383196169600207886170, 7.20076370469451708778379307001, 8.007509039546305721662804325009, 8.741323651530001136173780165085, 10.13122614600868786024269809506, 10.87734638698270711208985582851, 11.38241267452723834142933267119