L(s) = 1 | + (−0.987 − 0.156i)2-s + (−0.453 + 0.891i)3-s + (0.951 + 0.309i)4-s + (2.22 + 0.169i)5-s + (0.587 − 0.809i)6-s + (2.21 − 1.12i)7-s + (−0.891 − 0.453i)8-s + (−0.587 − 0.809i)9-s + (−2.17 − 0.515i)10-s + (−0.283 + 3.30i)11-s + (−0.707 + 0.707i)12-s + (0.668 − 4.22i)13-s + (−2.36 + 0.768i)14-s + (−1.16 + 1.90i)15-s + (0.809 + 0.587i)16-s + (−0.562 − 3.55i)17-s + ⋯ |
L(s) = 1 | + (−0.698 − 0.110i)2-s + (−0.262 + 0.514i)3-s + (0.475 + 0.154i)4-s + (0.997 + 0.0755i)5-s + (0.239 − 0.330i)6-s + (0.837 − 0.426i)7-s + (−0.315 − 0.160i)8-s + (−0.195 − 0.269i)9-s + (−0.688 − 0.163i)10-s + (−0.0853 + 0.996i)11-s + (−0.204 + 0.204i)12-s + (0.185 − 1.17i)13-s + (−0.632 + 0.205i)14-s + (−0.300 + 0.493i)15-s + (0.202 + 0.146i)16-s + (−0.136 − 0.861i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.292i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 - 0.292i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12525 + 0.168507i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12525 + 0.168507i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.987 + 0.156i)T \) |
| 3 | \( 1 + (0.453 - 0.891i)T \) |
| 5 | \( 1 + (-2.22 - 0.169i)T \) |
| 11 | \( 1 + (0.283 - 3.30i)T \) |
good | 7 | \( 1 + (-2.21 + 1.12i)T + (4.11 - 5.66i)T^{2} \) |
| 13 | \( 1 + (-0.668 + 4.22i)T + (-12.3 - 4.01i)T^{2} \) |
| 17 | \( 1 + (0.562 + 3.55i)T + (-16.1 + 5.25i)T^{2} \) |
| 19 | \( 1 + (-0.625 - 1.92i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-4.88 - 4.88i)T + 23iT^{2} \) |
| 29 | \( 1 + (2.39 - 7.37i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.54 + 2.57i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.20 - 2.36i)T + (-21.7 + 29.9i)T^{2} \) |
| 41 | \( 1 + (-1.25 + 0.407i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (-6.14 + 6.14i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.44 + 1.75i)T + (27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (13.0 + 2.06i)T + (50.4 + 16.3i)T^{2} \) |
| 59 | \( 1 + (6.61 + 2.14i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.07 + 1.47i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (9.79 - 9.79i)T - 67iT^{2} \) |
| 71 | \( 1 + (-8.56 - 6.22i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (6.17 + 12.1i)T + (-42.9 + 59.0i)T^{2} \) |
| 79 | \( 1 + (3.18 - 2.31i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-4.92 + 0.780i)T + (78.9 - 25.6i)T^{2} \) |
| 89 | \( 1 + 9.99iT - 89T^{2} \) |
| 97 | \( 1 + (0.208 - 1.31i)T + (-92.2 - 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23167021876489791627887877870, −10.60880888574234207138272630125, −9.805605404453982169499040031505, −9.114281924046610227796153890212, −7.85908551247320688830552435341, −6.98924764695250771535172162000, −5.62094411370598796510696609066, −4.78697764682462029754290882247, −3.03204268657045080562919968464, −1.45120117357624371024335190540,
1.37261004598896175214484904727, 2.55204167678280633424681529475, 4.74662996324326774434527044493, 5.99534568550123623989577847578, 6.54614535787836724701271667546, 7.927511696481548474750930306176, 8.743443801068251901413014107312, 9.470021953559265942418797676870, 10.83687382892178993293354165824, 11.22712689446586208120647498395