L(s) = 1 | + 2-s + (1.25 + 1.19i)3-s + 4-s − i·5-s + (1.25 + 1.19i)6-s − 3.22i·7-s + 8-s + (0.166 + 2.99i)9-s − i·10-s + (2.73 + 1.87i)11-s + (1.25 + 1.19i)12-s − 0.712i·13-s − 3.22i·14-s + (1.19 − 1.25i)15-s + 16-s − 6.12·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.726 + 0.687i)3-s + 0.5·4-s − 0.447i·5-s + (0.513 + 0.485i)6-s − 1.22i·7-s + 0.353·8-s + (0.0553 + 0.998i)9-s − 0.316i·10-s + (0.825 + 0.564i)11-s + (0.363 + 0.343i)12-s − 0.197i·13-s − 0.863i·14-s + (0.307 − 0.324i)15-s + 0.250·16-s − 1.48·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.211i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.977 - 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.41706 + 0.258433i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.41706 + 0.258433i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-1.25 - 1.19i)T \) |
| 5 | \( 1 + iT \) |
| 11 | \( 1 + (-2.73 - 1.87i)T \) |
good | 7 | \( 1 + 3.22iT - 7T^{2} \) |
| 13 | \( 1 + 0.712iT - 13T^{2} \) |
| 17 | \( 1 + 6.12T + 17T^{2} \) |
| 19 | \( 1 - 2.33iT - 19T^{2} \) |
| 23 | \( 1 - 3.03iT - 23T^{2} \) |
| 29 | \( 1 + 5.27T + 29T^{2} \) |
| 31 | \( 1 + 9.55T + 31T^{2} \) |
| 37 | \( 1 - 9.73T + 37T^{2} \) |
| 41 | \( 1 - 0.761T + 41T^{2} \) |
| 43 | \( 1 + 5.79iT - 43T^{2} \) |
| 47 | \( 1 + 11.7iT - 47T^{2} \) |
| 53 | \( 1 + 1.09iT - 53T^{2} \) |
| 59 | \( 1 - 1.95iT - 59T^{2} \) |
| 61 | \( 1 + 2.19iT - 61T^{2} \) |
| 67 | \( 1 - 2.80T + 67T^{2} \) |
| 71 | \( 1 + 11.7iT - 71T^{2} \) |
| 73 | \( 1 - 14.6iT - 73T^{2} \) |
| 79 | \( 1 - 13.5iT - 79T^{2} \) |
| 83 | \( 1 + 7.72T + 83T^{2} \) |
| 89 | \( 1 - 3.04iT - 89T^{2} \) |
| 97 | \( 1 - 10.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49995498396442145307898863566, −10.75006607863006792756121473172, −9.762293053421309167131688326410, −8.936998538071389698238354731172, −7.70240251558031936655004569838, −6.89442111739814472938160780410, −5.37838615318882172345813414196, −4.18972632182008154189291530485, −3.77403289996368841709465576137, −1.95204764389964242035112515087,
2.04150866178860465763316772635, 2.99408549748649944348884928185, 4.28220426282908288319696724914, 5.92008900532471792597129185760, 6.54327570846462333895177522508, 7.60588964382294450755990657529, 8.859774179328043417455377016349, 9.304858946115794850063193729846, 11.10700743579029359337814310527, 11.58767680479828257525116371269