Properties

Label 2-33-11.5-c7-0-0
Degree $2$
Conductor $33$
Sign $0.934 + 0.357i$
Analytic cond. $10.3087$
Root an. cond. $3.21071$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−6.47 − 19.9i)2-s + (−21.8 − 15.8i)3-s + (−251. + 182. i)4-s + (−11.5 + 35.6i)5-s + (−174. + 537. i)6-s + (80.4 − 58.4i)7-s + (3.08e3 + 2.24e3i)8-s + (225. + 693. i)9-s + 784.·10-s + (−1.38e3 + 4.19e3i)11-s + 8.38e3·12-s + (−2.82e3 − 8.70e3i)13-s + (−1.68e3 − 1.22e3i)14-s + (818. − 594. i)15-s + (1.24e4 − 3.82e4i)16-s + (−3.56e3 + 1.09e4i)17-s + ⋯
L(s)  = 1  + (−0.571 − 1.76i)2-s + (−0.467 − 0.339i)3-s + (−1.96 + 1.42i)4-s + (−0.0414 + 0.127i)5-s + (−0.330 + 1.01i)6-s + (0.0886 − 0.0644i)7-s + (2.13 + 1.55i)8-s + (0.103 + 0.317i)9-s + 0.248·10-s + (−0.313 + 0.949i)11-s + 1.40·12-s + (−0.356 − 1.09i)13-s + (−0.164 − 0.119i)14-s + (0.0626 − 0.0455i)15-s + (0.758 − 2.33i)16-s + (−0.175 + 0.541i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.934 + 0.357i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.934 + 0.357i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.934 + 0.357i$
Analytic conductor: \(10.3087\)
Root analytic conductor: \(3.21071\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :7/2),\ 0.934 + 0.357i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.542389 - 0.100132i\)
\(L(\frac12)\) \(\approx\) \(0.542389 - 0.100132i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (21.8 + 15.8i)T \)
11 \( 1 + (1.38e3 - 4.19e3i)T \)
good2 \( 1 + (6.47 + 19.9i)T + (-103. + 75.2i)T^{2} \)
5 \( 1 + (11.5 - 35.6i)T + (-6.32e4 - 4.59e4i)T^{2} \)
7 \( 1 + (-80.4 + 58.4i)T + (2.54e5 - 7.83e5i)T^{2} \)
13 \( 1 + (2.82e3 + 8.70e3i)T + (-5.07e7 + 3.68e7i)T^{2} \)
17 \( 1 + (3.56e3 - 1.09e4i)T + (-3.31e8 - 2.41e8i)T^{2} \)
19 \( 1 + (1.00e4 + 7.32e3i)T + (2.76e8 + 8.50e8i)T^{2} \)
23 \( 1 - 9.77e4T + 3.40e9T^{2} \)
29 \( 1 + (1.83e5 - 1.33e5i)T + (5.33e9 - 1.64e10i)T^{2} \)
31 \( 1 + (-5.58e4 - 1.71e5i)T + (-2.22e10 + 1.61e10i)T^{2} \)
37 \( 1 + (-1.47e5 + 1.06e5i)T + (2.93e10 - 9.02e10i)T^{2} \)
41 \( 1 + (-5.08e5 - 3.69e5i)T + (6.01e10 + 1.85e11i)T^{2} \)
43 \( 1 + 5.49e5T + 2.71e11T^{2} \)
47 \( 1 + (-1.76e5 - 1.28e5i)T + (1.56e11 + 4.81e11i)T^{2} \)
53 \( 1 + (-1.26e5 - 3.90e5i)T + (-9.50e11 + 6.90e11i)T^{2} \)
59 \( 1 + (2.16e6 - 1.57e6i)T + (7.69e11 - 2.36e12i)T^{2} \)
61 \( 1 + (-2.87e5 + 8.84e5i)T + (-2.54e12 - 1.84e12i)T^{2} \)
67 \( 1 + 2.81e5T + 6.06e12T^{2} \)
71 \( 1 + (-3.04e5 + 9.38e5i)T + (-7.35e12 - 5.34e12i)T^{2} \)
73 \( 1 + (3.48e6 - 2.53e6i)T + (3.41e12 - 1.05e13i)T^{2} \)
79 \( 1 + (2.42e6 + 7.46e6i)T + (-1.55e13 + 1.12e13i)T^{2} \)
83 \( 1 + (1.98e6 - 6.12e6i)T + (-2.19e13 - 1.59e13i)T^{2} \)
89 \( 1 + 4.84e6T + 4.42e13T^{2} \)
97 \( 1 + (-1.39e6 - 4.29e6i)T + (-6.53e13 + 4.74e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92580045516812890762084023320, −12.96101755784721242443813994801, −12.64068055567550196536321390249, −11.13503948496598417410717536389, −10.43968709712883854883643259738, −9.056267770363698050681785393784, −7.48747398146341165752836681590, −4.85044571126495049827572277032, −2.92091917111898023666679269815, −1.28579085726404594070477670592, 0.37694644743608404559776429542, 4.62084838305512062643840615074, 5.90046704646414259813137899218, 7.13824524068773026153516362596, 8.600431308006056781557155483911, 9.625489587091007301622478769793, 11.24256509831030487572658745650, 13.29902275795302543828215138354, 14.52108090471012134347812534156, 15.49779956351427200127755933178

Graph of the $Z$-function along the critical line