L(s) = 1 | + (0.309 − 0.951i)4-s + (−0.535 + 1.64i)7-s + (−1.40 + 1.01i)13-s + (−0.809 − 0.587i)16-s + (0.309 + 0.951i)25-s + (1.40 + 1.01i)28-s + (−0.809 + 0.587i)31-s + (−0.618 + 1.90i)37-s + (−1.61 − 1.17i)49-s + (0.535 + 1.64i)52-s + (−0.809 + 0.587i)64-s + 67-s + (0.535 − 1.64i)73-s + (−1.40 + 1.01i)79-s + (−0.927 − 2.85i)91-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)4-s + (−0.535 + 1.64i)7-s + (−1.40 + 1.01i)13-s + (−0.809 − 0.587i)16-s + (0.309 + 0.951i)25-s + (1.40 + 1.01i)28-s + (−0.809 + 0.587i)31-s + (−0.618 + 1.90i)37-s + (−1.61 − 1.17i)49-s + (0.535 + 1.64i)52-s + (−0.809 + 0.587i)64-s + 67-s + (0.535 − 1.64i)73-s + (−1.40 + 1.01i)79-s + (−0.927 − 2.85i)91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0915 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0915 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8050369967\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8050369967\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (0.535 - 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (1.40 - 1.01i)T + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.618 - 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.535 + 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (1.40 - 1.01i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.168824869857620166752452812654, −8.526115439790247141039052912743, −7.30328328473552716578572220058, −6.70313273580813546419609359097, −6.01296257893529757420498023443, −5.19694931673854151150612055091, −4.78543829831080837259891670875, −3.27150189037266342044196478051, −2.40343532750081219408425639106, −1.68838082735207986335194909498,
0.44292564118851874826017204613, 2.20605580038638148069130618917, 3.12166369090994156042647290702, 3.87838887860824342778484566402, 4.54148759815895904412120578335, 5.61187515045823790819831835435, 6.70032255746837491378408222578, 7.29582585270510138496181971097, 7.63560757480657814458314937591, 8.450543154499851264191250632097