L(s) = 1 | + (0.309 + 0.951i)4-s + (0.535 + 1.64i)7-s + (1.40 + 1.01i)13-s + (−0.809 + 0.587i)16-s + (0.309 − 0.951i)25-s + (−1.40 + 1.01i)28-s + (−0.809 − 0.587i)31-s + (−0.618 − 1.90i)37-s + (−1.61 + 1.17i)49-s + (−0.535 + 1.64i)52-s + (−0.809 − 0.587i)64-s + 67-s + (−0.535 − 1.64i)73-s + (1.40 + 1.01i)79-s + (−0.927 + 2.85i)91-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)4-s + (0.535 + 1.64i)7-s + (1.40 + 1.01i)13-s + (−0.809 + 0.587i)16-s + (0.309 − 0.951i)25-s + (−1.40 + 1.01i)28-s + (−0.809 − 0.587i)31-s + (−0.618 − 1.90i)37-s + (−1.61 + 1.17i)49-s + (−0.535 + 1.64i)52-s + (−0.809 − 0.587i)64-s + 67-s + (−0.535 − 1.64i)73-s + (1.40 + 1.01i)79-s + (−0.927 + 2.85i)91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.138 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.138 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.490400073\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.490400073\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + (-0.535 - 1.64i)T + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-1.40 - 1.01i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.618 + 1.90i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.535 + 1.64i)T + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-1.40 - 1.01i)T + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.945311217834349208868818473191, −8.374241769567576491051360002511, −7.71084183238227635668850863784, −6.71035219437790250767442759135, −6.09548617614323895831711200701, −5.30535490156922867749979685520, −4.25514532843930860726653968210, −3.52883593992294850045538045890, −2.43162509362731823549153244251, −1.84334850771038186060414741158,
0.977797967273941550486679143374, 1.58432429783273066992307798577, 3.15062700987905488767121907155, 3.90942786077673809977453538883, 4.90814441648953419554928809696, 5.51541139371785603852964447789, 6.49138156645023026973377015922, 7.02774931959390656341018512922, 7.84817114424950090257157553570, 8.531219560914317117845223954068