L(s) = 1 | + (−0.809 − 0.587i)4-s + (1.40 + 1.01i)7-s + (0.535 − 1.64i)13-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)25-s + (−0.535 − 1.64i)28-s + (0.309 − 0.951i)31-s + (1.61 + 1.17i)37-s + (0.618 + 1.90i)49-s + (−1.40 + 1.01i)52-s + (0.309 − 0.951i)64-s + 67-s + (−1.40 − 1.01i)73-s + (0.535 − 1.64i)79-s + (2.42 − 1.76i)91-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)4-s + (1.40 + 1.01i)7-s + (0.535 − 1.64i)13-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)25-s + (−0.535 − 1.64i)28-s + (0.309 − 0.951i)31-s + (1.61 + 1.17i)37-s + (0.618 + 1.90i)49-s + (−1.40 + 1.01i)52-s + (0.309 − 0.951i)64-s + 67-s + (−1.40 − 1.01i)73-s + (0.535 − 1.64i)79-s + (2.42 − 1.76i)91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 + 0.296i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 + 0.296i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.255285679\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.255285679\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + (-1.40 - 1.01i)T + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.535 + 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.61 - 1.17i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (1.40 + 1.01i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.535 + 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.715446002310813345736983270521, −8.064938564892446364358928312464, −7.72757857923463652781193486595, −6.12677664425773923615190612087, −5.72855852958456298897652638646, −5.02778685456962404870483034177, −4.36781376514039300401291353865, −3.22801539631462225947397688744, −2.09238739695922480170274799493, −1.03295609130040096468983528000,
1.12552068004285679721556097018, 2.22009894098205328378794168254, 3.66774085737244551595912799847, 4.30582770921797044786264947756, 4.67185386896563118855272927297, 5.74362423057227124862179632987, 6.84283839566174265653339136566, 7.47868446948580842570471937541, 8.187837929054881090594858745267, 8.700957476592016026658986608445