L(s) = 1 | + 4.29·2-s − 5.89i·3-s + 10.4·4-s − 25.3i·6-s + 34.1·7-s + 10.3·8-s − 7.75·9-s + 20.2i·11-s − 61.4i·12-s + (28.2 − 37.3i)13-s + 146.·14-s − 38.8·16-s + 75.8i·17-s − 33.2·18-s − 106. i·19-s + ⋯ |
L(s) = 1 | + 1.51·2-s − 1.13i·3-s + 1.30·4-s − 1.72i·6-s + 1.84·7-s + 0.458·8-s − 0.287·9-s + 0.556i·11-s − 1.47i·12-s + (0.603 − 0.797i)13-s + 2.80·14-s − 0.606·16-s + 1.08i·17-s − 0.435·18-s − 1.28i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.443 + 0.896i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.443 + 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(5.082349425\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.082349425\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-28.2 + 37.3i)T \) |
good | 2 | \( 1 - 4.29T + 8T^{2} \) |
| 3 | \( 1 + 5.89iT - 27T^{2} \) |
| 7 | \( 1 - 34.1T + 343T^{2} \) |
| 11 | \( 1 - 20.2iT - 1.33e3T^{2} \) |
| 17 | \( 1 - 75.8iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 106. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 11.7iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 224.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 126. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 9.49T + 5.06e4T^{2} \) |
| 41 | \( 1 + 214. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 308. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 42.4T + 1.03e5T^{2} \) |
| 53 | \( 1 - 112. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 437. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 440.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 758.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 693. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 113.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.21e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.11e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 151. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 179.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38191113576903542537037817162, −10.67597343932104464435670878902, −8.779634623805920478742794775493, −7.81362982224842115114367021273, −7.02441291556488502959151929750, −5.88435559758888537328992727642, −4.99220683024886619899750849522, −4.02507907559519945826344728136, −2.38385779074776564244516254017, −1.36357311151824406247620965545,
1.86164024032385107667169171893, 3.56178777844989676921087911642, 4.30931017160596221287500893333, 5.08579385925688181208082968543, 5.85246894193958772705640973339, 7.36295454255025461172716648039, 8.549240201307144587806568323730, 9.570027192905150246514077894253, 10.94527861122209224188375332237, 11.33189089012265197524002826799