L(s) = 1 | + 4.79i·2-s − 3.41·3-s − 14.9·4-s − 16.3i·6-s + 3.51i·7-s − 33.5i·8-s − 15.3·9-s − 25.2i·11-s + 51.1·12-s + (16.0 − 44.0i)13-s − 16.8·14-s + 40.8·16-s + 70.5·17-s − 73.6i·18-s − 3.06i·19-s + ⋯ |
L(s) = 1 | + 1.69i·2-s − 0.656·3-s − 1.87·4-s − 1.11i·6-s + 0.189i·7-s − 1.48i·8-s − 0.569·9-s − 0.693i·11-s + 1.22·12-s + (0.343 − 0.939i)13-s − 0.321·14-s + 0.637·16-s + 1.00·17-s − 0.964i·18-s − 0.0370i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.343 - 0.939i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.343 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.012274522\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.012274522\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-16.0 + 44.0i)T \) |
good | 2 | \( 1 - 4.79iT - 8T^{2} \) |
| 3 | \( 1 + 3.41T + 27T^{2} \) |
| 7 | \( 1 - 3.51iT - 343T^{2} \) |
| 11 | \( 1 + 25.2iT - 1.33e3T^{2} \) |
| 17 | \( 1 - 70.5T + 4.91e3T^{2} \) |
| 19 | \( 1 + 3.06iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 28.9T + 1.21e4T^{2} \) |
| 29 | \( 1 + 48.1T + 2.43e4T^{2} \) |
| 31 | \( 1 - 96.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 66.9iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 218. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 82.9T + 7.95e4T^{2} \) |
| 47 | \( 1 - 114. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 560.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 767. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 764.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 735. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 628. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 894. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.00e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 188. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.22e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 335. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.34031680951990144803453489199, −10.35684341206255155734043643592, −9.060452237505366107002955896503, −8.296350238575034363008235846759, −7.47531638381370386445160797031, −6.25525891467329111208835313981, −5.71083182329536950498193157790, −4.94042291330928002509828865035, −3.28581602008278544963258397652, −0.55067884152213059191524026390,
0.931431637555819560327395187058, 2.25375660420699420187154444743, 3.58137726495194653125893785705, 4.62055855364511024486531516117, 5.75553167636002497833760759015, 7.13773866705135416124884024217, 8.604118663204513785672034065039, 9.491178732308279589925502474452, 10.36488616697287295841080565611, 11.07384038943678100488724745882