L(s) = 1 | + 2.90i·2-s − 8.97·3-s − 0.433·4-s − 26.0i·6-s + 4.22i·7-s + 21.9i·8-s + 53.6·9-s + 6.14i·11-s + 3.89·12-s + (−7.45 + 46.2i)13-s − 12.2·14-s − 67.2·16-s − 75.8·17-s + 155. i·18-s + 123. i·19-s + ⋯ |
L(s) = 1 | + 1.02i·2-s − 1.72·3-s − 0.0541·4-s − 1.77i·6-s + 0.228i·7-s + 0.971i·8-s + 1.98·9-s + 0.168i·11-s + 0.0936·12-s + (−0.159 + 0.987i)13-s − 0.234·14-s − 1.05·16-s − 1.08·17-s + 2.03i·18-s + 1.48i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.159 + 0.987i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.159 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.3023532205\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3023532205\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (7.45 - 46.2i)T \) |
good | 2 | \( 1 - 2.90iT - 8T^{2} \) |
| 3 | \( 1 + 8.97T + 27T^{2} \) |
| 7 | \( 1 - 4.22iT - 343T^{2} \) |
| 11 | \( 1 - 6.14iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 75.8T + 4.91e3T^{2} \) |
| 19 | \( 1 - 123. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 112.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 81.0T + 2.43e4T^{2} \) |
| 31 | \( 1 + 259. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 142. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 198. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 346.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 343. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 24.8T + 1.48e5T^{2} \) |
| 59 | \( 1 + 247. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 524.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 43.6iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 737. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 344. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.02e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 954. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.24e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.74e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60682644843678804553290747926, −11.22046693979093244781846417511, −10.14794681933301041920555958392, −8.954201670637935469431819546151, −7.61681650686695785431837926957, −6.75513036991496119213435309326, −6.11001008489814136811696304654, −5.28137131148912593846492890918, −4.30531514396970760244754386138, −1.86328212799798738883524333056,
0.14772497708305181015331053056, 1.21130415737024820904107957474, 2.91195419256871161244084208866, 4.43739059453834811985438066505, 5.34949366898951645869796212813, 6.60585220628857752583455442458, 7.16577707309408348325326569301, 8.979746240808345561520123000315, 10.16074630052369258555166356957, 10.84951654475361572998909846420