L(s) = 1 | + (−0.974 + 3.63i)2-s + (−4.47 + 2.58i)3-s + (−8.81 − 5.09i)4-s + (−5.03 − 18.8i)6-s + (−0.239 − 0.893i)7-s + (16.4 − 16.4i)8-s + (8.86 − 15.3i)9-s + (−0.879 + 3.28i)11-s + 52.6·12-s + (−4.93 + 12.0i)13-s + 3.48·14-s + (23.4 + 40.6i)16-s + (5.69 − 9.86i)17-s + (47.2 + 47.2i)18-s + (−3.16 − 11.7i)19-s + ⋯ |
L(s) = 1 | + (−0.487 + 1.81i)2-s + (−1.49 + 0.861i)3-s + (−2.20 − 1.27i)4-s + (−0.839 − 3.13i)6-s + (−0.0341 − 0.127i)7-s + (2.05 − 2.05i)8-s + (0.985 − 1.70i)9-s + (−0.0799 + 0.298i)11-s + 4.38·12-s + (−0.379 + 0.925i)13-s + 0.248·14-s + (1.46 + 2.54i)16-s + (0.334 − 0.580i)17-s + (2.62 + 2.62i)18-s + (−0.166 − 0.620i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.167 - 0.985i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.167 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.275051 + 0.325853i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.275051 + 0.325853i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (4.93 - 12.0i)T \) |
good | 2 | \( 1 + (0.974 - 3.63i)T + (-3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (4.47 - 2.58i)T + (4.5 - 7.79i)T^{2} \) |
| 7 | \( 1 + (0.239 + 0.893i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (0.879 - 3.28i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (-5.69 + 9.86i)T + (-144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (3.16 + 11.7i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (19.6 + 33.9i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-5.86 - 10.1i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-18.4 + 18.4i)T - 961iT^{2} \) |
| 37 | \( 1 + (-14.5 - 3.90i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-9.84 - 2.63i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (16.7 - 29.0i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (40.8 - 40.8i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 21.3iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-10.2 + 2.73i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (47.5 - 82.3i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-6.90 + 25.7i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (10.2 + 38.0i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-89.2 + 89.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 8.13T + 6.24e3T^{2} \) |
| 83 | \( 1 + (46.6 + 46.6i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (10.0 - 37.6i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-135. + 36.4i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47433369679853975453141756125, −10.32682579885184403250976135613, −9.732460202989487474570185676913, −8.853015478653998842344264438055, −7.54112973816838777593076135814, −6.57154573052766960542652337382, −6.01360175645095053739255306952, −4.78135205682578797364786806915, −4.44995571789483588049961734696, −0.44483077333465743437998969443,
0.828662239180094438942836074727, 1.99657303052132550307391622162, 3.57237184954059583571209179543, 5.04144210642509316093657655850, 5.97749670053537968653180004697, 7.56400444948316845560249251783, 8.375183966086068021017768343576, 9.886981868673389186021542722656, 10.39620009946310285093436635259, 11.30893995005833597237190438137