L(s) = 1 | + (−0.401 + 0.107i)2-s + (3.61 + 2.08i)3-s + (−3.31 + 1.91i)4-s + (−1.67 − 0.448i)6-s + (−10.0 − 2.68i)7-s + (2.30 − 2.30i)8-s + (4.19 + 7.26i)9-s + (−4.73 + 1.26i)11-s − 15.9·12-s + (−10.5 − 7.53i)13-s + 4.31·14-s + (6.97 − 12.0i)16-s + (11.0 + 19.1i)17-s + (−2.46 − 2.46i)18-s + (−33.5 − 8.98i)19-s + ⋯ |
L(s) = 1 | + (−0.200 + 0.0537i)2-s + (1.20 + 0.695i)3-s + (−0.828 + 0.478i)4-s + (−0.279 − 0.0747i)6-s + (−1.43 − 0.384i)7-s + (0.287 − 0.287i)8-s + (0.466 + 0.807i)9-s + (−0.430 + 0.115i)11-s − 1.33·12-s + (−0.814 − 0.579i)13-s + 0.308·14-s + (0.436 − 0.755i)16-s + (0.650 + 1.12i)17-s + (−0.137 − 0.137i)18-s + (−1.76 − 0.472i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0564709 - 0.246481i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0564709 - 0.246481i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (10.5 + 7.53i)T \) |
good | 2 | \( 1 + (0.401 - 0.107i)T + (3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (-3.61 - 2.08i)T + (4.5 + 7.79i)T^{2} \) |
| 7 | \( 1 + (10.0 + 2.68i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (4.73 - 1.26i)T + (104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (-11.0 - 19.1i)T + (-144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (33.5 + 8.98i)T + (312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (15.9 - 27.6i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-13.5 + 23.4i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-9.08 + 9.08i)T - 961iT^{2} \) |
| 37 | \( 1 + (-3.85 - 14.3i)T + (-1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (3.69 + 13.7i)T + (-1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (-2.96 - 5.13i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (33.5 - 33.5i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 33.8iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (9.82 - 36.6i)T + (-3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (9.55 + 16.5i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (43.6 - 11.6i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (63.4 + 17.0i)T + (4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (55.4 - 55.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 71.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-54.0 - 54.0i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-66.8 + 17.9i)T + (6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (14.8 - 55.3i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24683614693737862733313264684, −10.30884961345025656865758174766, −9.985661043390721185834557489652, −9.180560378961059563929597897123, −8.273056523472659756227992600608, −7.56374491478973832991602435595, −6.09756222900311207514832752234, −4.45589907186406494829180355956, −3.65871249385705185845487279645, −2.73870129196895506211061227007,
0.10433657451386251545885793750, 2.13828765811660096215322534115, 3.21022428315294879976109562234, 4.65182939161743326660502325197, 6.10571978689230571230062670321, 7.09080636463719329762891142546, 8.291477501096560002412944596387, 8.909055712239132757059685613709, 9.747869316416961929185336654306, 10.42442410823925726060571208937