L(s) = 1 | + (1.88 − 1.88i)2-s − 0.793·3-s − 3.11i·4-s + (−1.49 + 1.49i)6-s + (−8.42 − 8.42i)7-s + (1.66 + 1.66i)8-s − 8.36·9-s + (−1.45 − 1.45i)11-s + 2.47i·12-s + (−11.6 − 5.73i)13-s − 31.7·14-s + 18.7·16-s − 2.73i·17-s + (−15.7 + 15.7i)18-s + (−2.87 + 2.87i)19-s + ⋯ |
L(s) = 1 | + (0.943 − 0.943i)2-s − 0.264·3-s − 0.779i·4-s + (−0.249 + 0.249i)6-s + (−1.20 − 1.20i)7-s + (0.208 + 0.208i)8-s − 0.929·9-s + (−0.132 − 0.132i)11-s + 0.206i·12-s + (−0.897 − 0.441i)13-s − 2.27·14-s + 1.17·16-s − 0.161i·17-s + (−0.877 + 0.877i)18-s + (−0.151 + 0.151i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.162i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.986 - 0.162i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0967842 + 1.18499i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0967842 + 1.18499i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (11.6 + 5.73i)T \) |
good | 2 | \( 1 + (-1.88 + 1.88i)T - 4iT^{2} \) |
| 3 | \( 1 + 0.793T + 9T^{2} \) |
| 7 | \( 1 + (8.42 + 8.42i)T + 49iT^{2} \) |
| 11 | \( 1 + (1.45 + 1.45i)T + 121iT^{2} \) |
| 17 | \( 1 + 2.73iT - 289T^{2} \) |
| 19 | \( 1 + (2.87 - 2.87i)T - 361iT^{2} \) |
| 23 | \( 1 + 41.2iT - 529T^{2} \) |
| 29 | \( 1 + 22.4T + 841T^{2} \) |
| 31 | \( 1 + (25.5 - 25.5i)T - 961iT^{2} \) |
| 37 | \( 1 + (-22.4 - 22.4i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-35.3 + 35.3i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + 4.97iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-16.0 - 16.0i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 55.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + (30.7 + 30.7i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + 4.68T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-64.9 + 64.9i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + (-2.47 + 2.47i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (75.2 + 75.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 67.8T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-91.5 + 91.5i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (45.9 + 45.9i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (111. - 111. i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74908407590962697756502067708, −10.56525756428700658312881851405, −9.356003785956846363242861307479, −7.950557456036791334639839954385, −6.82560920252981432605975765512, −5.68919405266951951334088451352, −4.56168309472380925083391225262, −3.48141668473876199304865885040, −2.57677300800520647744959572947, −0.39747891101339107210610668845,
2.58817742878903638929740705985, 3.88209016347457928270020667277, 5.42982356362358366970093751629, 5.74112064196726479367372124652, 6.76020729833150122323903154070, 7.74173054758824306941676889305, 9.142365588686834183216973055755, 9.758743280462729849266599384567, 11.24976915904310447273854352726, 12.14270387920425715492179104890