L(s) = 1 | + (0.616 − 1.06i)2-s + (0.608 + 2.26i)3-s + (0.240 + 0.416i)4-s + (2.79 + 0.749i)6-s + (−2.09 + 1.20i)7-s + 3.05·8-s + (−2.18 + 1.25i)9-s + (0.721 − 0.193i)11-s + (−0.798 + 0.798i)12-s + (−3.31 + 1.41i)13-s + 2.98i·14-s + (1.40 − 2.43i)16-s + (4.58 + 1.22i)17-s + 3.10i·18-s + (1.17 − 4.37i)19-s + ⋯ |
L(s) = 1 | + (0.435 − 0.754i)2-s + (0.351 + 1.31i)3-s + (0.120 + 0.208i)4-s + (1.14 + 0.305i)6-s + (−0.791 + 0.456i)7-s + 1.08·8-s + (−0.727 + 0.419i)9-s + (0.217 − 0.0582i)11-s + (−0.230 + 0.230i)12-s + (−0.919 + 0.393i)13-s + 0.796i·14-s + (0.350 − 0.607i)16-s + (1.11 + 0.297i)17-s + 0.732i·18-s + (0.269 − 1.00i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.683 - 0.730i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.683 - 0.730i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.71147 + 0.742640i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.71147 + 0.742640i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (3.31 - 1.41i)T \) |
good | 2 | \( 1 + (-0.616 + 1.06i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.608 - 2.26i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (2.09 - 1.20i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.721 + 0.193i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-4.58 - 1.22i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.17 + 4.37i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (7.11 - 1.90i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-4.31 - 2.49i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-6.01 + 6.01i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.517 - 0.298i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.40 + 5.25i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-3.05 + 11.4i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 11.2iT - 47T^{2} \) |
| 53 | \( 1 + (-0.469 + 0.469i)T - 53iT^{2} \) |
| 59 | \( 1 + (9.49 + 2.54i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (0.729 + 1.26i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.94 - 3.37i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.47 + 0.664i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 4.94T + 73T^{2} \) |
| 79 | \( 1 - 10.7iT - 79T^{2} \) |
| 83 | \( 1 + 1.96iT - 83T^{2} \) |
| 89 | \( 1 + (-3.40 - 12.6i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-5.87 - 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.98341899966405603420322932010, −10.67330099182181868285659110795, −9.953596997796844788783277116328, −9.346067868898658426846305312046, −8.143084186182828654691830628240, −6.89822034618508348808398884075, −5.39377124694625196453778902525, −4.27988042138942109334776405795, −3.45460902747609275611744464971, −2.45475913559497639711182304963,
1.30026125769291526040394912719, 2.90494571872970612883833346137, 4.58767051350886083632695169344, 6.04016250271046119559532031486, 6.54203072419404351178672620197, 7.67757759062923081748946103695, 7.932245720191117242816647912618, 9.787222636665235070810641716439, 10.32219903852919933284647963686, 11.97197529342173265615522576988