L(s) = 1 | + (0.457 − 0.791i)2-s + (−0.0872 − 0.325i)3-s + (0.582 + 1.00i)4-s + (−0.297 − 0.0797i)6-s + (−3.61 + 2.08i)7-s + 2.89·8-s + (2.49 − 1.44i)9-s + (5.01 − 1.34i)11-s + (0.277 − 0.277i)12-s + (2.87 − 2.17i)13-s + 3.81i·14-s + (0.157 − 0.272i)16-s + (2.91 + 0.780i)17-s − 2.63i·18-s + (−1.43 + 5.35i)19-s + ⋯ |
L(s) = 1 | + (0.323 − 0.559i)2-s + (−0.0503 − 0.188i)3-s + (0.291 + 0.504i)4-s + (−0.121 − 0.0325i)6-s + (−1.36 + 0.788i)7-s + 1.02·8-s + (0.833 − 0.481i)9-s + (1.51 − 0.404i)11-s + (0.0801 − 0.0801i)12-s + (0.798 − 0.602i)13-s + 1.01i·14-s + (0.0393 − 0.0682i)16-s + (0.706 + 0.189i)17-s − 0.621i·18-s + (−0.329 + 1.22i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 + 0.303i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.952 + 0.303i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69145 - 0.263142i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69145 - 0.263142i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-2.87 + 2.17i)T \) |
good | 2 | \( 1 + (-0.457 + 0.791i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.0872 + 0.325i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (3.61 - 2.08i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.01 + 1.34i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.91 - 0.780i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.43 - 5.35i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.65 - 0.442i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (7.08 + 4.08i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.64 - 2.64i)T - 31iT^{2} \) |
| 37 | \( 1 + (6.72 + 3.88i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.228 + 0.853i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-0.224 + 0.839i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 1.44iT - 47T^{2} \) |
| 53 | \( 1 + (-0.405 + 0.405i)T - 53iT^{2} \) |
| 59 | \( 1 + (9.44 + 2.53i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (2.28 + 3.95i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.55 + 6.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.65 + 0.712i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 6.02T + 73T^{2} \) |
| 79 | \( 1 + 12.5iT - 79T^{2} \) |
| 83 | \( 1 - 8.44iT - 83T^{2} \) |
| 89 | \( 1 + (-3.79 - 14.1i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.386 - 0.670i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.94234890544862758304284019336, −10.74817308192607233550801191920, −9.760932315282577762390478906970, −8.907633703439033043279297405119, −7.69478304863608945610528646874, −6.54156360554687096373693210175, −5.88655160221446406795935962482, −3.75860794825840082814629251288, −3.49464375803963405754560640912, −1.67810449411475874036893923948,
1.49819317429403450658870887881, 3.68178696660883574628483637280, 4.54292550495736211492113192082, 5.97549681241156764729094687538, 6.89149744559670241270418395818, 7.23545235484491982018631352625, 9.085918343338338788401567239431, 9.819494544158232611438477085764, 10.61438980864776782182094926627, 11.54362894267704836994166101954