L(s) = 1 | + (0.403 + 0.698i)2-s + (0.724 − 2.70i)3-s + (0.674 − 1.16i)4-s + (2.17 − 0.584i)6-s + (3.71 + 2.14i)7-s + 2.70·8-s + (−4.18 − 2.41i)9-s + (−3.05 − 0.818i)11-s + (−2.67 − 2.67i)12-s + (−1.10 + 3.43i)13-s + 3.45i·14-s + (−0.260 − 0.450i)16-s + (−4.86 + 1.30i)17-s − 3.89i·18-s + (0.287 + 1.07i)19-s + ⋯ |
L(s) = 1 | + (0.285 + 0.493i)2-s + (0.418 − 1.56i)3-s + (0.337 − 0.584i)4-s + (0.889 − 0.238i)6-s + (1.40 + 0.809i)7-s + 0.955·8-s + (−1.39 − 0.805i)9-s + (−0.920 − 0.246i)11-s + (−0.770 − 0.770i)12-s + (−0.306 + 0.951i)13-s + 0.923i·14-s + (−0.0650 − 0.112i)16-s + (−1.18 + 0.316i)17-s − 0.918i·18-s + (0.0658 + 0.245i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.600 + 0.799i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.600 + 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.79281 - 0.895859i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79281 - 0.895859i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (1.10 - 3.43i)T \) |
good | 2 | \( 1 + (-0.403 - 0.698i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.724 + 2.70i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-3.71 - 2.14i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.05 + 0.818i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (4.86 - 1.30i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.287 - 1.07i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-4.05 - 1.08i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (4.02 - 2.32i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.69 + 3.69i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.626 + 0.361i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.382 + 1.42i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-2.34 - 8.76i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 1.60iT - 47T^{2} \) |
| 53 | \( 1 + (9.02 + 9.02i)T + 53iT^{2} \) |
| 59 | \( 1 + (-0.00962 + 0.00257i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.39 - 4.15i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.50 - 2.60i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.96 + 0.525i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 14.3T + 73T^{2} \) |
| 79 | \( 1 + 2.02iT - 79T^{2} \) |
| 83 | \( 1 + 0.914iT - 83T^{2} \) |
| 89 | \( 1 + (3.20 - 11.9i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (2.84 - 4.93i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36903378758113346663654169330, −11.06287171675801722675327103390, −9.280733178707668655925563819011, −8.259746069831840258973643125358, −7.57375284759195836509199642592, −6.71436327087699277075240646980, −5.72302211680346240651225520952, −4.76673556541286531647335512403, −2.35622375493896274073418628253, −1.65190118834309398270795326649,
2.36816712928188416112157449337, 3.53713445913972194916895992820, 4.60787638306704016789411777647, 5.07673468260368592015967329132, 7.29672960887857359179503690841, 8.031578761916790487786705142363, 8.998787770963768566561252874655, 10.27874112303757131619659760142, 10.87579903489492394930320727589, 11.24783720327779738584532384334