L(s) = 1 | + (−0.457 − 0.791i)2-s + (0.0872 − 0.325i)3-s + (0.582 − 1.00i)4-s + (−0.297 + 0.0797i)6-s + (3.61 + 2.08i)7-s − 2.89·8-s + (2.49 + 1.44i)9-s + (5.01 + 1.34i)11-s + (−0.277 − 0.277i)12-s + (−2.87 − 2.17i)13-s − 3.81i·14-s + (0.157 + 0.272i)16-s + (−2.91 + 0.780i)17-s − 2.63i·18-s + (−1.43 − 5.35i)19-s + ⋯ |
L(s) = 1 | + (−0.323 − 0.559i)2-s + (0.0503 − 0.188i)3-s + (0.291 − 0.504i)4-s + (−0.121 + 0.0325i)6-s + (1.36 + 0.788i)7-s − 1.02·8-s + (0.833 + 0.481i)9-s + (1.51 + 0.404i)11-s + (−0.0801 − 0.0801i)12-s + (−0.798 − 0.602i)13-s − 1.01i·14-s + (0.0393 + 0.0682i)16-s + (−0.706 + 0.189i)17-s − 0.621i·18-s + (−0.329 − 1.22i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.488 + 0.872i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.488 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23396 - 0.723641i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23396 - 0.723641i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (2.87 + 2.17i)T \) |
good | 2 | \( 1 + (0.457 + 0.791i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.0872 + 0.325i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-3.61 - 2.08i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.01 - 1.34i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (2.91 - 0.780i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.43 + 5.35i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.65 - 0.442i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (7.08 - 4.08i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.64 + 2.64i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6.72 + 3.88i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.228 - 0.853i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (0.224 + 0.839i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 1.44iT - 47T^{2} \) |
| 53 | \( 1 + (0.405 + 0.405i)T + 53iT^{2} \) |
| 59 | \( 1 + (9.44 - 2.53i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.28 - 3.95i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.55 + 6.15i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.65 - 0.712i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 6.02T + 73T^{2} \) |
| 79 | \( 1 - 12.5iT - 79T^{2} \) |
| 83 | \( 1 - 8.44iT - 83T^{2} \) |
| 89 | \( 1 + (-3.79 + 14.1i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (0.386 - 0.670i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27987711218850776538620895989, −10.80236047828087126925634818025, −9.471629680742514833166710427599, −8.976675614271949878733527986523, −7.64466048747948557247827574411, −6.69480556065831482547864449023, −5.39466436926339623099042901718, −4.40815467712189625806858671363, −2.38757420956209066159752159952, −1.51035926540518483891774211751,
1.67882104057708973735871122894, 3.76223958858053679933492080454, 4.50912723347981004060557134840, 6.23557281092280817208567536606, 7.10814462903259873861351713749, 7.82537573073501963542502940752, 8.880039057422195690845565093864, 9.658259888459736127934040080788, 11.00008976301315959112729455906, 11.68834572070194414509167152824