L(s) = 1 | + (−1.39 − 2.40i)2-s + (0.196 − 0.732i)3-s + (−2.86 + 4.96i)4-s + (−2.03 + 0.545i)6-s + (1.71 + 0.989i)7-s + 10.3·8-s + (2.10 + 1.21i)9-s + (2.64 + 0.707i)11-s + (3.07 + 3.07i)12-s + (−2.83 + 2.22i)13-s − 5.50i·14-s + (−8.71 − 15.0i)16-s + (4.08 − 1.09i)17-s − 6.74i·18-s + (0.742 + 2.77i)19-s + ⋯ |
L(s) = 1 | + (−0.983 − 1.70i)2-s + (0.113 − 0.422i)3-s + (−1.43 + 2.48i)4-s + (−0.831 + 0.222i)6-s + (0.647 + 0.373i)7-s + 3.67·8-s + (0.700 + 0.404i)9-s + (0.796 + 0.213i)11-s + (0.887 + 0.887i)12-s + (−0.785 + 0.618i)13-s − 1.47i·14-s + (−2.17 − 3.77i)16-s + (0.990 − 0.265i)17-s − 1.58i·18-s + (0.170 + 0.635i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0511 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0511 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.641745 - 0.609731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.641745 - 0.609731i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (2.83 - 2.22i)T \) |
good | 2 | \( 1 + (1.39 + 2.40i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.196 + 0.732i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.71 - 0.989i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.64 - 0.707i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-4.08 + 1.09i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.742 - 2.77i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (3.16 + 0.847i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (0.288 - 0.166i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.77 - 3.77i)T + 31iT^{2} \) |
| 37 | \( 1 + (0.539 - 0.311i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.894 + 3.33i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (2.20 + 8.21i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 5.83iT - 47T^{2} \) |
| 53 | \( 1 + (-3.61 - 3.61i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7.72 + 2.07i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-5.34 + 9.26i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.571 + 0.989i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.43 - 1.72i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 4.34T + 73T^{2} \) |
| 79 | \( 1 - 4.93iT - 79T^{2} \) |
| 83 | \( 1 + 2.83iT - 83T^{2} \) |
| 89 | \( 1 + (-1.09 + 4.07i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (5.23 - 9.06i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52796612192874271063072210709, −10.30547540276424036404384995261, −9.790938734960192822222662672482, −8.767373557599171124119104733184, −7.918674863086983463029824220988, −7.10717544103231316906946652307, −4.88139204638036077269814616885, −3.80845291979285174311311126876, −2.29878464665070753489071501583, −1.39287702040124156312644256313,
1.11851536739257520028565603232, 4.15565069764849856763268504740, 5.11780742202160366006989751196, 6.21619816150662112497276987817, 7.23708446142938220077167872893, 7.917199844986876196884764497408, 8.873575325694976320676997886633, 9.869830598917144261493795104091, 10.20164513595804736686347481347, 11.55612028606805620868605696699