Properties

Label 2-325-1.1-c9-0-105
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $167.386$
Root an. cond. $12.9377$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24.7·2-s − 194.·3-s + 99.0·4-s − 4.80e3·6-s − 5.35e3·7-s − 1.02e4·8-s + 1.80e4·9-s + 7.92e4·11-s − 1.92e4·12-s − 2.85e4·13-s − 1.32e5·14-s − 3.03e5·16-s − 4.52e5·17-s + 4.46e5·18-s + 2.12e5·19-s + 1.04e6·21-s + 1.95e6·22-s + 7.59e5·23-s + 1.98e6·24-s − 7.05e5·26-s + 3.15e5·27-s − 5.30e5·28-s − 9.00e5·29-s + 2.27e6·31-s − 2.26e6·32-s − 1.54e7·33-s − 1.11e7·34-s + ⋯
L(s)  = 1  + 1.09·2-s − 1.38·3-s + 0.193·4-s − 1.51·6-s − 0.843·7-s − 0.881·8-s + 0.917·9-s + 1.63·11-s − 0.267·12-s − 0.277·13-s − 0.921·14-s − 1.15·16-s − 1.31·17-s + 1.00·18-s + 0.374·19-s + 1.16·21-s + 1.78·22-s + 0.565·23-s + 1.22·24-s − 0.302·26-s + 0.114·27-s − 0.163·28-s − 0.236·29-s + 0.441·31-s − 0.381·32-s − 2.26·33-s − 1.43·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(167.386\)
Root analytic conductor: \(12.9377\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + 2.85e4T \)
good2 \( 1 - 24.7T + 512T^{2} \)
3 \( 1 + 194.T + 1.96e4T^{2} \)
7 \( 1 + 5.35e3T + 4.03e7T^{2} \)
11 \( 1 - 7.92e4T + 2.35e9T^{2} \)
17 \( 1 + 4.52e5T + 1.18e11T^{2} \)
19 \( 1 - 2.12e5T + 3.22e11T^{2} \)
23 \( 1 - 7.59e5T + 1.80e12T^{2} \)
29 \( 1 + 9.00e5T + 1.45e13T^{2} \)
31 \( 1 - 2.27e6T + 2.64e13T^{2} \)
37 \( 1 - 4.70e6T + 1.29e14T^{2} \)
41 \( 1 - 3.39e7T + 3.27e14T^{2} \)
43 \( 1 - 2.33e7T + 5.02e14T^{2} \)
47 \( 1 - 5.14e7T + 1.11e15T^{2} \)
53 \( 1 + 1.01e8T + 3.29e15T^{2} \)
59 \( 1 - 1.32e8T + 8.66e15T^{2} \)
61 \( 1 + 1.23e8T + 1.16e16T^{2} \)
67 \( 1 - 2.15e8T + 2.72e16T^{2} \)
71 \( 1 + 2.06e8T + 4.58e16T^{2} \)
73 \( 1 + 3.44e8T + 5.88e16T^{2} \)
79 \( 1 - 5.03e7T + 1.19e17T^{2} \)
83 \( 1 + 8.20e7T + 1.86e17T^{2} \)
89 \( 1 + 6.17e8T + 3.50e17T^{2} \)
97 \( 1 - 9.91e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.570853952457832456555911573502, −8.975120061358639022756191915533, −7.03812296867580163577459813292, −6.32624836941914474931911375528, −5.78189679365836632993287361615, −4.61158703429881764634711314252, −3.99864618999147645764002022712, −2.72425576536042627704246268463, −0.988525376084742963796375738240, 0, 0.988525376084742963796375738240, 2.72425576536042627704246268463, 3.99864618999147645764002022712, 4.61158703429881764634711314252, 5.78189679365836632993287361615, 6.32624836941914474931911375528, 7.03812296867580163577459813292, 8.975120061358639022756191915533, 9.570853952457832456555911573502

Graph of the $Z$-function along the critical line