Properties

Label 2-57e2-1.1-c1-0-68
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51·2-s + 4.32·4-s − 3.32·5-s + 2.32·7-s + 5.83·8-s − 8.34·10-s + 1.70·11-s + 4.02·13-s + 5.83·14-s + 6.02·16-s − 14.3·20-s + 4.29·22-s + 2.34·23-s + 6.02·25-s + 10.1·26-s + 10.0·28-s − 6.64·29-s + 6.70·31-s + 3.48·32-s − 7.70·35-s − 37-s − 19.3·40-s + 6.64·41-s + 0.707·43-s + 7.37·44-s + 5.90·46-s + 6·47-s + ⋯
L(s)  = 1  + 1.77·2-s + 2.16·4-s − 1.48·5-s + 0.877·7-s + 2.06·8-s − 2.64·10-s + 0.514·11-s + 1.11·13-s + 1.55·14-s + 1.50·16-s − 3.20·20-s + 0.915·22-s + 0.489·23-s + 1.20·25-s + 1.98·26-s + 1.89·28-s − 1.23·29-s + 1.20·31-s + 0.616·32-s − 1.30·35-s − 0.164·37-s − 3.06·40-s + 1.03·41-s + 0.107·43-s + 1.11·44-s + 0.870·46-s + 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.330556390\)
\(L(\frac12)\) \(\approx\) \(5.330556390\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 - 2.51T + 2T^{2} \)
5 \( 1 + 3.32T + 5T^{2} \)
7 \( 1 - 2.32T + 7T^{2} \)
11 \( 1 - 1.70T + 11T^{2} \)
13 \( 1 - 4.02T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
23 \( 1 - 2.34T + 23T^{2} \)
29 \( 1 + 6.64T + 29T^{2} \)
31 \( 1 - 6.70T + 31T^{2} \)
37 \( 1 + T + 37T^{2} \)
41 \( 1 - 6.64T + 41T^{2} \)
43 \( 1 - 0.707T + 43T^{2} \)
47 \( 1 - 6T + 47T^{2} \)
53 \( 1 - 9.96T + 53T^{2} \)
59 \( 1 + 1.70T + 59T^{2} \)
61 \( 1 - 3.38T + 61T^{2} \)
67 \( 1 + 8.37T + 67T^{2} \)
71 \( 1 - 9.41T + 71T^{2} \)
73 \( 1 - 11.6T + 73T^{2} \)
79 \( 1 + 3.34T + 79T^{2} \)
83 \( 1 - 10.0T + 83T^{2} \)
89 \( 1 - 2.67T + 89T^{2} \)
97 \( 1 - 17.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.337196012126021111843356662426, −7.71435956057497221456898792166, −7.01428097868081438510683021992, −6.24442470622530667956531931773, −5.39826874295739582424784674223, −4.61771212231854216260714124870, −3.94720159198705705690894644285, −3.56771318262696213402071862467, −2.44929385036094861160676087479, −1.15722349165664516667868881151, 1.15722349165664516667868881151, 2.44929385036094861160676087479, 3.56771318262696213402071862467, 3.94720159198705705690894644285, 4.61771212231854216260714124870, 5.39826874295739582424784674223, 6.24442470622530667956531931773, 7.01428097868081438510683021992, 7.71435956057497221456898792166, 8.337196012126021111843356662426

Graph of the $Z$-function along the critical line