| L(s) = 1 | + i·2-s + (0.866 + 0.5i)3-s + (−0.5 − 0.866i)5-s + (−0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + i·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.5i)10-s + (0.5 + 0.866i)11-s + i·13-s + (0.866 − 0.5i)14-s − 0.999i·15-s − 16-s + (−0.866 + 0.499i)18-s − 0.999i·21-s + (−0.866 + 0.5i)22-s + ⋯ |
| L(s) = 1 | + i·2-s + (0.866 + 0.5i)3-s + (−0.5 − 0.866i)5-s + (−0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + i·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.5i)10-s + (0.5 + 0.866i)11-s + i·13-s + (0.866 − 0.5i)14-s − 0.999i·15-s − 16-s + (−0.866 + 0.499i)18-s − 0.999i·21-s + (−0.866 + 0.5i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.377 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.377 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.692151276\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.692151276\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + iT - T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.977440747385035824082096061633, −8.136805135300413564064923616531, −7.68132970987373296332605561326, −6.88544946830315770653054332533, −6.36703637482567675088751227017, −5.07139296908961610999724303546, −4.40206185632107883636033408269, −3.95280525624727366517558353730, −2.66876054969257525298115112071, −1.55055409765672252724664728835,
0.970849694995781042071026792199, 2.36492469892885217930073532316, 2.84619274314538837040087896126, 3.44203264323633921580717397823, 4.18884055683482022185798452812, 5.90449159526958471522330074513, 6.34849943238090450427996119859, 7.18055456737483649394202925331, 7.960585911828243385162897426292, 8.599805546333105722036475644106