| L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + 0.999·8-s + 0.999·10-s + (−1 − 1.73i)11-s + (0.5 − 0.866i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 19-s + (−0.499 − 0.866i)20-s + (−0.999 + 1.73i)22-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + 0.999·8-s + 0.999·10-s + (−1 − 1.73i)11-s + (0.5 − 0.866i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 19-s + (−0.499 − 0.866i)20-s + (−0.999 + 1.73i)22-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7510232589\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7510232589\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| good | 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 2T + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - 2T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.480676807611327247294799801035, −8.209373712572557973251502358896, −7.58152837765408716159878823074, −6.34197433296330745668163290648, −5.68749489108613563593076449986, −4.65063956843494897380920665463, −3.62347378956749057768147089426, −2.85468991959902631254159574940, −2.35505118207077451704885693061, −0.63088498262957786877999365299,
1.14257753522792945873190143295, 2.10995009594499634705880901142, 4.02992299739737853962169585471, 4.52720176469718369979864929211, 5.03957871765039858921651706046, 6.10226298989492232937594995415, 7.03238605825532987182737946157, 7.63357820498692989287934724390, 8.003579776703579370758019413072, 8.942633923580969335391689214883