Properties

Label 4-3240e2-1.1-c0e2-0-15
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·11-s + 2·23-s + 3·25-s + 2·31-s + 2·37-s + 2·41-s + 2·43-s − 2·47-s − 4·55-s + 2·67-s − 2·71-s − 2·83-s − 2·97-s − 2·101-s + 2·103-s − 2·107-s + 4·115-s + 121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·155-s + ⋯
L(s)  = 1  + 2·5-s − 2·11-s + 2·23-s + 3·25-s + 2·31-s + 2·37-s + 2·41-s + 2·43-s − 2·47-s − 4·55-s + 2·67-s − 2·71-s − 2·83-s − 2·97-s − 2·101-s + 2·103-s − 2·107-s + 4·115-s + 121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.200724629\)
\(L(\frac12)\) \(\approx\) \(2.200724629\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2^2$ \( 1 + T^{4} \)
11$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2^2$ \( 1 + T^{4} \)
17$C_2^2$ \( 1 + T^{4} \)
19$C_2^2$ \( 1 - T^{2} + T^{4} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 - T + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
53$C_2^2$ \( 1 + T^{4} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
71$C_2$ \( ( 1 + T + T^{2} )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.073421811241552927831966085376, −8.738331015602951732028981966480, −8.271172739149102188118703992782, −7.86069572770182248889146000039, −7.65849991331762784159655355608, −7.07693253781228957577916211209, −6.70195060112868478299087943806, −6.35481563452777511878332141853, −5.93204099044015984028090742942, −5.64694940891030320170253981809, −5.13023926277635098893184360445, −5.11380009412380131379549430652, −4.32949296382578035542719194848, −4.31271459933775652156159640621, −3.08618063707521553158278071417, −2.85041318677267347682328820602, −2.49390221519112733229272636961, −2.38626684902158955179129635607, −1.25014256384810785344034605294, −1.07000138614464741192678716173, 1.07000138614464741192678716173, 1.25014256384810785344034605294, 2.38626684902158955179129635607, 2.49390221519112733229272636961, 2.85041318677267347682328820602, 3.08618063707521553158278071417, 4.31271459933775652156159640621, 4.32949296382578035542719194848, 5.11380009412380131379549430652, 5.13023926277635098893184360445, 5.64694940891030320170253981809, 5.93204099044015984028090742942, 6.35481563452777511878332141853, 6.70195060112868478299087943806, 7.07693253781228957577916211209, 7.65849991331762784159655355608, 7.86069572770182248889146000039, 8.271172739149102188118703992782, 8.738331015602951732028981966480, 9.073421811241552927831966085376

Graph of the $Z$-function along the critical line