L(s) = 1 | + (−1.5 − 2.59i)5-s + (2 − 3.46i)7-s + (12 − 20.7i)11-s + (12.5 + 21.6i)13-s − 21·17-s − 52·19-s + (−84 − 145. i)23-s + (58 − 100. i)25-s + (88.5 − 153. i)29-s + (62 + 107. i)31-s − 12·35-s − 265·37-s + (−213 − 368. i)41-s + (80 − 138. i)43-s + (270 − 467. i)47-s + ⋯ |
L(s) = 1 | + (−0.134 − 0.232i)5-s + (0.107 − 0.187i)7-s + (0.328 − 0.569i)11-s + (0.266 + 0.461i)13-s − 0.299·17-s − 0.627·19-s + (−0.761 − 1.31i)23-s + (0.464 − 0.803i)25-s + (0.566 − 0.981i)29-s + (0.359 + 0.622i)31-s − 0.0579·35-s − 1.17·37-s + (−0.811 − 1.40i)41-s + (0.283 − 0.491i)43-s + (0.837 − 1.45i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.343187825\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.343187825\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1.5 + 2.59i)T + (-62.5 + 108. i)T^{2} \) |
| 7 | \( 1 + (-2 + 3.46i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-12 + 20.7i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-12.5 - 21.6i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 21T + 4.91e3T^{2} \) |
| 19 | \( 1 + 52T + 6.85e3T^{2} \) |
| 23 | \( 1 + (84 + 145. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-88.5 + 153. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-62 - 107. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + 265T + 5.06e4T^{2} \) |
| 41 | \( 1 + (213 + 368. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-80 + 138. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-270 + 467. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + 258T + 1.48e5T^{2} \) |
| 59 | \( 1 + (264 + 457. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-252.5 + 437. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-122 - 211. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 204T + 3.57e5T^{2} \) |
| 73 | \( 1 + 397T + 3.89e5T^{2} \) |
| 79 | \( 1 + (100 - 173. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-270 + 467. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 453T + 7.04e5T^{2} \) |
| 97 | \( 1 + (145 - 251. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84611000424966160724525866539, −10.15265706925924009527018765735, −8.772520913133446563615335350715, −8.363476396434094498605581186543, −6.92983882324330148520787007670, −6.12696750957581783072254795827, −4.73961624072525861003486273148, −3.77809750531836244476227595412, −2.18176607861530931626572138183, −0.49249243989808514936793690198,
1.53701907886629696013771176405, 3.06682374657034306688268259310, 4.31583716744626583491764209087, 5.52407729899431169942267919761, 6.63954365576572072827632667093, 7.60829363830556501942699795630, 8.625999041060918191249177280798, 9.593923613501455549061917756939, 10.55287851910520646583074969246, 11.42984413616213853092117343169