L(s) = 1 | + (−0.513 − 2.78i)2-s + (−7.47 + 2.85i)4-s + 2.40i·5-s − 2.65i·7-s + (11.7 + 19.3i)8-s + (6.70 − 1.23i)10-s − 48.2·11-s + 40.7·13-s + (−7.39 + 1.36i)14-s + (47.6 − 42.6i)16-s − 36.3i·17-s + 125. i·19-s + (−6.87 − 18.0i)20-s + (24.7 + 134. i)22-s + 194.·23-s + ⋯ |
L(s) = 1 | + (−0.181 − 0.983i)2-s + (−0.934 + 0.356i)4-s + 0.215i·5-s − 0.143i·7-s + (0.520 + 0.853i)8-s + (0.211 − 0.0391i)10-s − 1.32·11-s + 0.868·13-s + (−0.141 + 0.0260i)14-s + (0.745 − 0.666i)16-s − 0.518i·17-s + 1.51i·19-s + (−0.0769 − 0.201i)20-s + (0.240 + 1.30i)22-s + 1.75·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 + 0.934i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.356 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.417528262\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.417528262\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.513 + 2.78i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 2.40iT - 125T^{2} \) |
| 7 | \( 1 + 2.65iT - 343T^{2} \) |
| 11 | \( 1 + 48.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 40.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + 36.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 125. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 194.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 177. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 175. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 199.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 233. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 291. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 61.8T + 1.03e5T^{2} \) |
| 53 | \( 1 + 352. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 141.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 15.4T + 2.26e5T^{2} \) |
| 67 | \( 1 - 152. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 28.0T + 3.57e5T^{2} \) |
| 73 | \( 1 - 124.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 748. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 348.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 416. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.50e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91213792454571673111808028744, −10.30208994666562550989263303740, −9.316830806554047326108680792898, −8.275362824036951608899538724080, −7.47643065340401467027621988527, −5.87609620087099496163419021275, −4.75490537938584829857652699199, −3.48916884853883747365340393884, −2.41723479743398967351321010792, −0.803278166258825505838416134904,
0.916845216566830930541371009862, 3.04986830917482063311740709734, 4.70509819709750591052769786755, 5.39176653824804200844240937141, 6.62797219507168997473733880006, 7.45936751390814461356135879384, 8.650494107166783982616286284139, 9.028754824861882832543820568362, 10.46180407944122430299772627309, 11.02508298112002283966564065626